Skip to main content Accessibility help

Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor

  • Zachary P. Rice (a1), Benjamin D. Briggs (a1), Seann M. Bishop (a1) and Nathaniel C. Cady (a1)


Resistive memory devices have the potential to replace flash technology due to their increased scalability, low voltage of operation, and compatibility with silicon semiconductor manufacturing. We report a spin-on resistive switching material, hydrogen silsesquioxane (HSQ), which is a commonly used electron beam resist. We demonstrate device scalability from 100 μm to 48 nm and show that the switching properties do not depend on the device size. Set voltages were typically <3 V, while reset voltages were <1 V when analyzing the positive unipolar switching properties of these devices. The ratio of the high resistance to the low resistance was ranged from 101 to 102, creating a distinct memory window between the memory states. Composition–depth profiling revealed that copper from the bottom electrode migrated into the HSQ films as a result of annealing. It is therefore speculated that copper may play a role in the switching properties of devices based on this material.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Waser, R., Dittmann, R., Staikov, G., and Szot, K.: Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 26322663 (2009).
2.Pershin, Y.V. and Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145227 (2011).
3.Ouyang, J.: Application of nanomaterials in two-terminal resistive-switching memory devices. Nano Rev. 1, 114 (2010).
4.Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 2836 (2008).
5.Wang, R.Y., Tangirala, R., Raoux, S., Jordan-Sweet, J.L., and Milliron, D.J.: Ionic and electronic transport in Ag2S nanocrystal-GeS2 matrix composites with size-controlled Ag2S nanocrystals. Adv. Mater. 24, 99103 (2012).
6.Kwon, D-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X-S., Park, G-S., Lee, B., Han, S., Kim, M., and Hwang, C.S.: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148153 (2010).
7.Briggs, B.D., Bishop, S.M., Capulong, J.O., Hovish, M.Q., Matyi, R.J., and Cady, N.C.: Comparison of HfOx-based resistive memory devices with crystalline and amorphous active layers. Semiconductor Device Research Symposium (ISDRS), 2011 International. 7–9 Dec. 2011, pp. 1–2.
8.Miao, F., Strachan, J.P., Yang, J.J., Zhang, M-X., Goldfarb, I., Torrezan, A.C., Eschbach, P., Kelley, R.D., Medeiros-Ribeiro, G., and Williams, R.S.: Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 56335640 (2011).
9.Qi, J., Olmedo, M., Ren, J., Zhan, N., Zhao, J., Zheng, J-G., and Liu, J.: Resistive switching in single epitaxial ZnO nanoislands. ACS Nano. 6, 10511058 (2012).
10.Van Nostrand, J.E., Cortez, R., Rice, Z.P., Cady, N.C., and Bergkvist, M.: Local transport properties, morphology and microstructure of ZnO decorated SiO2 nanoparticles. Nanotechnology 21, 415602 (2010).
11.Linn, E., Rosezin, R., Kügeler, C., and Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403406 (2010).
12.Bishop, S.M., Bakhru, H., Novak, S.W., Briggs, B.D., Matyi, R.J., and Cady, N.C.: Ion implantation synthesized copper oxide-based resistive memory devices. Appl. Phys. Lett. 99, 202102 (2011).
13.Cagli, C., Nardi, F., and Ielmini, D.: Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans. Electron Devices 56, 17121720 (2009).
14.Schindler, C., Thermadam, S.C.P., Waser, R., and Kozicki, M.N.: Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 27622768 (2007).
15.Simmons, J.G. and Verderber, R.R.: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. A: Math. Phys. Eng. Sci. 301, 77102 (1967).
16.Furuta, S., Takahashi, T., Naitoh, Y., Horikawa, M., Shimizu, T., and Ono, M.: Dependence of electric properties of a nanogap junction on electrode material. Jpn. J. Appl. Phys. 47, 18061812 (2008).
17.Meier, M., Gilles, S., Rosezin, R., Schindler, C., Trellenkamp, S., Rüdiger, A., Mayer, D., Kügeler, C., and Waser, R.: Resistively switching Pt/spin-on glass/Ag nanocells for non-volatile memories fabricated with UV nanoimprint lithography. Microelectron. Eng. 86, 10601062 (2009).
18.Rosezin, R., Meier, M., Breuer, U., Kügeler, C., and Waser, R.: Electroforming and resistance switching characteristics of silver-doped MSQ with inert electrodes. IEEE Trans. Nanotechnol. 10, 338343 (2011).
19.Yao, J., Sun, Z., Zhong, L., Natelson, D., and Tour, J.M.: Resistive switches and memories from silicon oxide. Nano Lett. 10, 41054110 (2010).
20.Yao, J., Zhong, L., Natelson, D., and Tour, J.M.: Intrinsic resistive switching and memory effects in silicon oxide. Appl. Phys. A. 102, 835839 (2011).
21.Yao, J., Zhong, L., Natelson, D., and Tour, J.M.: Etching-dependent reproducible memory switching in vertical SiO2 structures. Appl. Phys. Lett. 93, 253101 (2008).
22.Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., Labbé, C., Garrido, B., Rizk, R., and Kenyon, A.J.: Resistive switching in silicon suboxide films. J. Appl. Phys. 111, 074507 (2012).
23.Schindler, C., Weides, M., Kozicki, M.N., and Waser, R.: Low current resistive switching in Cu–SiO2 cells. Appl. Phys. Lett. 92, 122910 (2008).
24.Kim, S., Jeong, H.Y., Kim, S.K., Choi, S-Y., and Lee, K.J.: Flexible memristive memory array on plastic substrates. Nano Lett. 11, 54385442 (2011).
25.Yang, C-C. and Chen, W-C.: The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing. J. Mater. Chem. 12, 11381141 (2002).
26.Bornhauser, P. and Calzaferri, G.: Ring-opening vibrations of spherosiloxanes. J. Phys. Chem. 100, 20352044 (1996).
27.Marcolli, C., Lainé, P., Bühler, R., Calzaferri, G., and Tomkinson, J.: Vibrations of H8Si8O12, D8Si8O12, and H10Si10O15 as determined by INS, IR, and Raman experiments. J. Phys. Chem. B. 101, 11711179 (1997).
28.Kim, K.M., Jeong, D.S., and Hwang, C.S.: Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).
29.Kim, K.M., Choi, B.J., Koo, B.W., Choi, S., Jeong, D.S., and Hwang, C.S.: Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures. Electrochem. Solid-State Lett. 9, G343G346 (2006).
30.Loke, A.L.S., Yue, C.P., Cho, J.S.H., and Wong, S.S.: Kinetics of copper drift in PECVD dielectrics. IEEE Electron Device Lett. 17, 549551 (1996).
31.Thermadam, S.P., Bhagat, S.K., Alford, T.L., Sakaguchi, Y., Kozicki, M.N., and Mitkova, M.: Influence of Cu diffusion conditions on the switching of Cu–SiO2-based resistive memory devices. Thin Solid Films 518, 32933298 (2010).
32.Willis, B.G. and Lang, D.V.: Oxidation mechanism of ionic transport of copper in SiO2 dielectrics. Thin Solid Films 467, 284293 (2004).
33.He, M. and Lu, T-M.: Metal-dielectric interfaces in gigascale electronics. In Chapter 2 Metal–Dielectric Diffusion Processes: Fundamentals, R. Hull, C. Jagadish, R.M. Osgood, J. Parisi, and Z.M. Wang, eds. Vol. 157 (Springer, New York, NY, 2012); pp. 1122.
34.Zhi-yong, P. and Ming-pu, W.: Thermomechanical treatment of super high strength Cu-8.0Ni-1.8Si alloy. Trans. Nonferrous Met. Soc. China 17, S1076S1080 (2007).
35.Stobrawa, J., Rdzawski, Z., Głuchowski, W., and Malec, W.: Ultrafine grained strips of precipitation hardened copper alloys. Arch. Metall. Mater. 56, 171179 (2011).

Related content

Powered by UNSILO

Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor

  • Zachary P. Rice (a1), Benjamin D. Briggs (a1), Seann M. Bishop (a1) and Nathaniel C. Cady (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.