Skip to main content Accessibility help
×
Home

Determination of the true projected contact area by in situ indentation testing

  • Gaylord Guillonneau (a1), Jeffrey M. Wheeler (a2), Juri Wehrs (a3), Laetitia Philippe (a3), Paul Baral (a4), Heinz Werner Höppel (a5), Mathias Göken (a5) and Johann Michler (a3)...
  • Please note a correction has been issued for this article.

Abstract

A major limitation in nanoindentation analysis techniques is the inability to accurately quantify pile-up/sink-in around indentations. In this work, the contact area during indentation is determined simultaneously using both contact mechanical models and direct in situ observation in the scanning electron microscope. The pile-up around indentations in materials with low H/E ratios (nanocrystalline nickel and ultrafine-grained aluminum) and the sink-in around a material with a high H/E ratio (fused silica) were quantified and compared to existing indentation analyses. The in situ projected contact area measured by Scanning Electron Microscopy using a cube-corner tip differs significantly from the classical models for materials with low H/E modulus ratio. Using a Berkovich tip, the in situ contact area is in good agreement with the contact model suggested by Loubet et al. for materials with low H/E ratio and in good agreement with the Oliver and Pharr model for materials with high H/E ratio.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: gaylord.guillonneau@ec-lyon.fr

Footnotes

Hide All

*This article has been corrected since its original publication. An erratum notice detailing these changes was also published (doi: 10.1557/jmr.2019.310).

Footnotes

References

Hide All
1.Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, 2000).
2.Fischer-Cripps, A.C.: Nanoindentation (Springer-Verlag, New York, 2002).
3.Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1, 145 (1970).
4.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
5.Bulychev, S.I., Alekhin, V.P., Shorshorov, M.K., Ternovskii, A.P., and Shnyrev, G.D.: Determining Young modulus from the indenter penetration diagram. Ind. Lab. USSR Engl. Transl. Zavod. Lab. 41, 1409 (1975).
6.Pharr, G.M., Oliver, W.C., and Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).
7.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
8.King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).
9.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
10.Loubet, J.L., Georges, J.M., and Meille, G.: In Microindentation Techniques in Materials Science and Engineering, American Society for Testing Materials, Blau, P.J and Lawn, B., eds. (Philadelphia, 1986); pp. 7289.
11.Asif, S.A.S., Wahl, K.J., and Colton, R.J.: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408 (1999).
12.Bolshakov, A., Oliver, W.C., and Pharr, G.M.: Finite element studies of the influence of pile-up on the analysis of nanoindentation data. MRS Proc. 436, 141 (1996).
13.Bolshakov, A. and Pharr, G.M.: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).
14.Loubet, J.L., Bauer, M., Tonck, A., Bec, S., and Gauthier-Manuel, B.: NATO Adv. Study Inst. Ser., Ser. E 429 (1993).
15.Hochstetter, G., Jimenez, A., and Loubet, J.L.: Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J. Macromol. Sci., Part B: Phys. 38, 681 (1999).
16.Guillonneau, G.: Nouvelles Techniques de Nano-Indentation Pour Des Conditions Expérimentales Difficiles: Très Faibles Enfoncements, Surfaces Rugueuses, Température (Ecully, Ecole centrale de Lyon, France, 2012).
17.Bec, S., Tonck, A., Georges, J-M., Georges, E., and Loubet, J-L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74, 1061 (1996).
18.Stilwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).
19.Tuck, J.R., Korsunsky, A.M., Bull, S.J., and Davidson, R.I.: On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surf. Coat. Technol. 137, 217 (2001).
20.Cabibbo, M. and Ricci, P.: True hardness evaluation of bulk metallic materials in the presence of pile up: Analytical and enhanced lobes method approaches. Metall. Mater. Trans. A 44, 531 (2013).
21.McElhaney, K.W., Vlassak, J.J., and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
22.Charleux, L., Keryvin, V., Nivard, M., Guin, J-P., Sanglebœuf, J-C., and Yokoyama, Y.: A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging. Acta Mater. 70, 249 (2014).
23.Howell, J.A., Hellmann, J.R., and Muhlstein, C.L.: Correlations between free volume and pile-up behavior in nanoindentation reference glasses. Mater. Lett. 62, 2140 (2008).
24.Kempf, M., Göken, M., and Vehoff, H.: The mechanical properties of different lamellae and domains in PST-TiAl investigated with nanoindentations and atomic force microscopy. Mater. Sci. Eng., A 329–331, 184 (2002).
25.Volz, T., Schwaiger, R., Wang, J., and Weygand, S.M.: In International Conference on Mechanical Engineering Research ICMER2017 (Iop Publishing Ltd., Bristol, 2017); p. UNSP 012013.
26.Göken, M., Sakidja, R., Nix, W.D., and Perepezko, J.H.: Microstructural mechanical properties and yield point effects in Mo alloys. Mater. Sci. Eng., A 319–321, 902 (2001).
27.ur Rehman, H., Durst, K., Neumeier, S., Parsa, A.B., Kostka, A., Eggeler, G., and Göken, M.: Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy. Mater. Sci. Eng., A 634, 202 (2015).
28.Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 (2004).
29.Moser, B., Kuebler, J., Meinhard, H., Muster, W., and Michler, J.: Observation of instabilities during plastic deformation by in situ SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).
30.Moser, B., Löffler, J.F., and Michler, J.: Discrete deformation in amorphous metals: An in situ SEM indentation study. Philos. Mag. 86, 5715 (2006).
31.Maschmann, M.R., Zhang, Q., Wheeler, R., Du, F., Dai, L., and Baur, J.: In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648 (2011).
32.Nili, H., Kalantar-zadeh, K., Bhaskaran, M., and Sriram, S.: In situ nanoindentation: Probing nanoscale multifunctionality. Prog. Mater. Sci. 58, 1 (2013).
33.Legros, M., Gianola, D.S., and Motz, C.: Quantitative in situ mechanical testing in electron microscopes. MRS Bull. 35, 354 (2010).
34.May, J., Höppel, H.W., and Göken, M.: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53, 189 (2005).
35.Saile, V.: In LIGA and Its Applications, Saile, V., Wallrabe, U., Tabata, O. and Korvink, J.G., eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008); pp. 110.
36.Guillonneau, G., Kermouche, G., Bec, S., and Loubet, J-L.: Determination of mechanical properties by nanoindentation independently of indentation depth measurement. J. Mater. Res. 27, 2551 (2012).
37.Weihs, T.P. and Pethica, J.B.: Monitoring time-dependent deformation in small volumes. MRS Online Proc. Libr. Arch. 239, 325330 (1991).
38.Spence, D.A.: The hertz contact problem with finite friction. J. Elast. 5, 297 (1975).
39.Bucaille, J.L., Stauss, S., Felder, E., and Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).
40.Grunzweig, J., Longman, I.M., and Petch, N.J.: Calculations and measurements on wedge-indentation. J. Mech. Phys. Solids 2, 81 (1954).
41.Chitkara, N.R. and Butt, M.A.: Numerical construction of axisymmetric slip-line fields for indentation of thick blocks by rigid conical indenters and friction at the tool-metal interface. Int. J. Mech. Sci. 34, 849 (1992).
42.Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).

Keywords

Type Description Title
WORD
Supplementary materials

Guillonneau et al. supplementary material
Guillonneau et al. supplementary material

 Word (550 KB)
550 KB

Determination of the true projected contact area by in situ indentation testing

  • Gaylord Guillonneau (a1), Jeffrey M. Wheeler (a2), Juri Wehrs (a3), Laetitia Philippe (a3), Paul Baral (a4), Heinz Werner Höppel (a5), Mathias Göken (a5) and Johann Michler (a3)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: