Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-29T22:21:12.219Z Has data issue: false hasContentIssue false

Deposition, structure, and hardness of polycrystalline transition-metal nitride superlattice films

Published online by Cambridge University Press:  31 January 2011

X. Chu
Affiliation:
Department of Materials Science and Engineering and the Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
M. S. Wong
Affiliation:
Department of Materials Science and Engineering and the Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
W. D. Sproul
Affiliation:
Department of Materials Science and Engineering and the Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
S. A. Barnett
Affiliation:
Department of Materials Science and Engineering and the Advanced Coating Technology Group, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Polycrystalline TiN/VN, NbN/VN, and TiN/NbN superlattices with periods Λ between 2 and 160 nm were deposited onto steel substrates using an opposed-cathode reactive magnetron sputtering system. The nitrogen partial pressure and the substrate bias values were optimized in order to obtain dense stoichiometric films, which yielded the highest Vickers hardnesses HV. HV for TiN/VN and TiN/NbN superlattices reached maximum values of ≈5000 kgf/mm2 at Λ ≈ 5–10 nm, compared with ≈2000 kgf/mm2 for homogeneous TiN, NbN, and VN films. In contrast, HV ≈ 2000 kgf/mm2 was obtained for VN/NbN superlattices independent of Λ. Model calculations in which the hardness enhancement was proportional to the difference in layer shear moduli gave good agreement with the data. The lack of hardness enhancement in VN/NbN indicates that any other hardening mechanisms, such as coherency strains and dislocation blocking by interfacial misfit dislocations, were not important.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barnett, S. A., in Physics of Thin Films, edited by Francombe, M.H. and Vossen, J. L. (Academic Press, San Diego, CA, 1993), Vol. 17, p. 1;Google Scholar
Barnett, S. A. and Shinn, M., in Ann. Rev. Mater. Sci. 24, 481 (1994).CrossRefGoogle Scholar
2.Was, G. S. and Foecke, T., Thin Solid Films 286, 1 (1996).Google Scholar
3.Koehler, J., Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
4.Mirkarimi, P. B., Barnett, S. A., Hubbard, K. M., Jervis, T. R., and Hultman, L., J. Mater. Res. 9, 1456 (1994).CrossRefGoogle Scholar
5.Yoshii, K., Takagi, H., Umeno, M., and Kawabe, H., Metall. Trans. A15, 1273 (1984).CrossRefGoogle Scholar
6.Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).Google Scholar
7.Shinn, M., Hultman, L., and Barnett, S. A., J. Mater. Res. 7, 901 (1992).Google Scholar
8.Shinn, M. and Barnett, S. A., Appl. Phys. Lett. 64, 61 (1994).CrossRefGoogle Scholar
9.Chu, X. and Barnett, S. A., J. Appl. Phys. 77, 4403 (1995).Google Scholar
10.Anderson, P. M. and Li, C., Nanostruct. Mater. 5, 349 (1995).Google Scholar
11.Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., and Nomura, T., Surf. Coat. Technol. 87–88, 225 (1996).CrossRefGoogle Scholar
12.Chu, X., Wong, M. S., Sproul, W. D., and Barnett, S. A., Surf. Coat. Technol. 57, 13 (1993).CrossRefGoogle Scholar
13.Tambwe, M. F., Stone, D. S., Griffin, A. J., Kung, H., Cheng Lu, Y., and Nastasi, M., J. Mater. Res. 14, 407417 (1999).Google Scholar
14.Daniels, B. J., Ph.D. Thesis, Stanford University, 1995.Google Scholar
15.Chu, X., Wong, M. S., Sproul, W. D., Rohde, S. L., and Barnett, S. A., J. Vac. Sci. Technol. A10, 1604 (1992).CrossRefGoogle Scholar
16.Petrov, I., Hultman, L., Helmersson, U., Sundgren, J-E., and Greene, J. E., Thin Solid Films 169, 299 (1989).Google Scholar
17.Chu, X., Wong, M. S., Sproul, W. D., and Barnett, S. A., Surf. Coat. Technol. 61, 251 (1993).Google Scholar
18.Sproul, W. D., Rudnik, P. J., Graham, M. E., and Rohde, S. L., Surf. Coat. Technol. 43/44, 270 (1990).Google Scholar
19.Sproul, W. D. and Tomashek, J. A., U.S. Patent No. 4,428,811 (1984).Google Scholar
20.Rohde, S. L., Petrov, I., Sproul, W. D., Barnett, S.A., Rudnik, P. J., and Graham, M. E., Thin Solid Films 193/194, 117 (1990).CrossRefGoogle Scholar
21.Sundgren, J-E. and Hentzell, H. T. G., J. Vac. Sci. Technol. A4, 2259 (1986).CrossRefGoogle Scholar
22.Helmersson, U. and Sundgren, J-E., J. Electron Microsc. Technol. 4, 361 (1986).CrossRefGoogle Scholar
23.Sproul, W. D., Rudnik, P. J., and Gogol, C. A., Thin Solid Films 171, 171 (1989).Google Scholar
24.Wong, M. S., Sproul, W. D., Chu, X., and Barnett, S. A., J. Vac. Sci. Technol. A11, 1528 (1993).Google Scholar
25.Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J-E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
26.Shinn, M., Mirkarimi, P. B., and Barnett, S. A., Surf. Sci. 281, 1 (1992).Google Scholar
27.Messier, R., Grii, A. P., and Roy, R. A., J. Vac. Sci. Technol. A2, 500 (1984).CrossRefGoogle Scholar
28.Müller, K-H., Phys. Rev. B 35, 7906 (1987).Google Scholar
29.Petrov, I., Hultman, L., Helmersson, U., Sundgren, J-E., and Greene, J. E., Thin Solid Films 169, 299 (1989).Google Scholar
30.Häkansson, G., Sundgren, J-E., McIntyre, D., Greene, J. E., and Münz, W-D., Thin Solid Films 153, 55 (1987).CrossRefGoogle Scholar
31.Petrov, I., Hultman, L., Sundgren, J-E., and Greene, J. E., J. Vac. Sci. Technol. A10, 265 (1992).CrossRefGoogle Scholar
32.Wong, M. S., Sproul, W. D., Chu, X., and Barnett, S. A., J. Vac. Sci. Technol. A11, 1528 (1993).CrossRefGoogle Scholar
33.Hultman, L., Shinn, M., Mirkarimi, P. B., and Barnett, S.A., J. Cryst. Growth 135, 309 (1994).CrossRefGoogle Scholar
34.Häkansson, G., Birch, J., Hultman, L., Ivanov, I. P., Sundgren, J-E., and Wallenberg, L. R., J. Cryst. Growth 121, 399 (1992).Google Scholar
35.Birch, J., Yamamoto, Y., Hultman, L., Randnoczi, G., and Sundgren, J-E., Vacuum 41, 1231 (1990).CrossRefGoogle Scholar
36.Mirkarimi, P. B., Shinn, M., Barnett, S. A., Kumar, S., and Grimsditch, M., J. Appl. Phys. 71, 4955 (1992).CrossRefGoogle Scholar