Skip to main content Accessibility help

Deposition of crystal polythiophene thin films by KrF excimer laser ablation

  • Y. F. Lu (a1), Z. M. Ren (a1), Z. H. Mai (a1), T. C. Chong (a1), S. C. Ng (a2), P. Miao (a2), B. A. Cheong (a3), S. K. Chow (a3) and T. Y. F. Liew (a3)...


Thin films of polythiophene, a kind of polyheterocyclic compound with hydrogen function groups, were deposited by KrF excimer laser ablation of a compressed solid target in a vacuum chamber. The laser pulse fluence was approximately selected at 2 J/cm2 with a pulse duration of 25 ns. The structural, topographic, and electronic properties of the deposited thin films were analyzed by atomic force microscope, x-ray diffraction, and Raman and infrared spectroscopy measurements. Deposited thin films were observed to have good crystal properties and to be composed of crystalline cubes with a uniform size of 0.1 μm. The electronic structure of the deposited thin films should be different from the target materials, resulting from the laser irradiation effects. The influence of the deposition temperature on the structural and electronic properties of the deposited thin films was studied.


Corresponding author


Hide All
1.Tasch, S., List, E.J.W, Hochfilzer, C., Leising, G., Schlichting, P., Rohr, U., Geerts, Y., Scherf, U., and Mullen, K., Phys. Rev. B 56, 4479 (1997).
2.Tada, K., Onoda, M., and Nakayama, H., Jpn. J. Appl. Phys. Pt. 2 38, L1181 (1998).
3.Carter, S.A., Scott, J.C., and Brock, P.J., Appl. Phys. Lett. 71, 1145 (1997).
4.Benaissa, M., Gonsalves, K.E., and Rangarajan, S.P., Appl. Phys. Lett. 71, 3685 (1997).
5.Misra, S.C.K, Ram, M.K., Pandey, S.S., Malhotra, B.D., and Chandra, S., Appl. Phys. Lett. 61, 1219 (1992).
6.Usui, H., Koshikawa, H., and Tanaka, K., J. Vac. Sci. Technol. A 13, 2318 (1995).
7.Bernede, J.C., Taoudi, H., and Kodjo, E., RRD Polym. Sci. 1, 205 (1997).
8.ACS Symposium Series, edited by Shen, M. and Bell, A.T. (American Chemical Society, Washington, DC, 1979), Vol. 108.
9.Yasuda, H., Plasma Polymerization (Academic Press, Orlando, FL, 1985).
10.Katoh, T. and Zhang, Y., Appl. Surf. Sci. 139, 165 (1999).
11.Koren, G., Appl. Phys. Lett. 50, 1030 (1987).
12.Tatsuura, S., Sotoyama, W., and Yoshimura, T., Appl. Phys. Lett. 60, 1661 (1992).
13.Katoh, T. and Zhang, Y., Appl. Phys. Lett. 68, 865 (1996).
14.Quaranta, F., Valentini, A., Favia, P., Lamendola, R., and d'Agostino, R., Appl. Phys. Lett. 63, 10 (1993).
15.Gonzalo, J., Dyer, P.E., and Hird, M., Appl. Phys. Lett. 71, 2752 (1997).
16.Salih, A.J., Lau, S.P., Marshall, J.M., Maud, J.M., Bowen, W.R., Hilal, N., Lovitt, R.W., and Williams, P.M., Appl. Phys. Lett. 69, 2231 (1996).
17.Gibson, J.K., J. Vac. Sci. Technol. A 15, 2107 (1997).
18.Turrell, G. and Corset, J., Raman Microscopy: Developments and Applications (Academic Press, San Diego, CA, 1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed