Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T19:06:02.077Z Has data issue: false hasContentIssue false

Deposition and Characterization of Diamond-Like Carbon Thin Films by Electro-Deposition Technique Using Organic Liquid

Published online by Cambridge University Press:  03 March 2011

S.C. Ray*
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
B. Bose
Affiliation:
Department of Physics, North-Bengal University, Siliguri 734430, India
J.W. Chiou
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
H.M. Tsai
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
J.C. Jan
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
Krishna Kumar
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
W.F. Pong
Affiliation:
Department of Physics, Tamkang University, Tamsui 251, Taiwan
D. DasGupta
Affiliation:
Department of Physics, North-Bengal University, Siliguri 734430, India
G. Fanchini
Affiliation:
Dipartimento di Fisica & Unità INFM, Politecnico di Torino Torino, Italy
A. Tagliaferro
Affiliation:
Dipartimento di Fisica & Unità INFM, Politecnico di Torino Torino, Italy
*
a)Address all correspondence to this author.
Get access

Abstract

Diamond-like carbon films were synthesized by electro-deposition technique from an organic liquid (a solution of alpha- and beta-pinenes in n-hexane) on silicon substrate at room temperature and at room pressure. The x-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectra, Raman spectra, photoluminescence (PL), and x-ray absorption near edge structure (XANES) spectra analysis were used to study the properties of the diamond-like carbon (as-deposited and annealed) films. The XRD measurement indicated that the film contains some diamond-crystalline phases whereas Raman spectra did not show any prominent diamond-like peak. PL intensity as higher for the as-deposited film and decreased with high-temperature vacuum annealing. FTIR spectra showed the presence of sp3 hybridization C–H bonds and their intensity decreases at higher annealing temperature. C and O K-edge XANES spectra showed that π* (sp2) intensity significantly decreases when the annealing temperature is 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J.C. and Hayman, C.C.: Science. 241, 914 (1988).Google Scholar
2Voevodin, A.A., Laube, S.J.P., Walck, S.D., Solomon, J.S., Donley, M.S. and Zabinski, J.S.: J. Appl. Phys. 78, 4123 (1995).CrossRefGoogle Scholar
3Wang, H., Shen, M.R., Ning, Z.Y., Ye, C., Cao, C.B., Dang, H.Y. and Zhu, H.S.: Appl. Phys. Lett. 69, 1074 (1996).Google Scholar
4Novikov, V.P. and Dymont, V.P.: Appl. Phys. Lett. 70, 200 (1997).CrossRefGoogle Scholar
5Wang, H., Shen, M.R., Ning, Z.Y., Ye, C., Dang, H.Y., Cao, C.B. and Zhu, H.S.: Thin Solid Films. 293, 87 (1997).Google Scholar
6Fu, Q., Jiu, J.T., Wang, H., Cao, C.B. and Zhu, H.S.: Chem. Phys. Lett. 301, 87 (1999).CrossRefGoogle Scholar
7Guo, D., Cai, K., Li, L. and Zhu, H.: Chem. Phys. Lett. 325, 499 (2000).Google Scholar
8Chen, A.M., Pingsuthiwong, C. and Golden, T.D.: J. Mater. Res. 18, 1561 (2003).Google Scholar
9Asokan, K., Srivastava, S.K., Kabiraj, D., Mookerjee, S., Avasthi, D.K., Jan, J.C., Chiou, J.W., Pong, W.F., Ting, L.C. and Chien, F.Z.: Nucl. Instrum. Meth. Phys. Res. B. 193, 324 (2002).CrossRefGoogle Scholar
10 S. Gibbs, Z. Kristallogr. 145, 108,(1977).Google Scholar
11 Powder x-ray diffraction data of elements, oxides and minerals for high pressure XRD experiments by Masami Kanzaki, (2000).Google Scholar
12Darrell, P., Xi, Y. and Jenq, L.: J. Am. Cerm. Soc. 75, 1876 (1992).Google Scholar
13Ono, S.: Science. 282, 720 (1998).Google Scholar
14Fayette, L., Marcus, B., Mermoux, M., Tourillon, G., Laffon, K., Parent, P. and Normand, F. Le: Phys. Rev. B. 57, 14123 (1998).CrossRefGoogle Scholar
15Dilon, R.O., Woollam, J.A. and Katkanat, V.: Phys. Rev. B. 29, 3482 (1994).CrossRefGoogle Scholar
16Ferrari, A.C. and Robertson, J.: Phys. Rev. B. 61, 14095 (2000).CrossRefGoogle Scholar
17Rusli, G.A.J., Amaratunga, and Robertson, J.: Phys.Rev. B. 53, 16306 (1996).CrossRefGoogle Scholar
18Street, R.A.: Adv. In Phys. 25, 397 (1976).CrossRefGoogle Scholar
19Xu, S., Ma, T., Li, W., Chen, K., Du, J., Huang, X. and Non-Cryst, J.: Solids. 266269, 769 (2000).Google Scholar
20Demichelis, F., Schreiter, S. and Tagliferro, A.: Phys. Rev. B. 51, 2134 (1995).Google Scholar
21Fanchini, G., Ray, S.C., Tagliaferro, A. and Laurenti, E.: J. Phys. Condens. Matter. 14, 13231 (2002).CrossRefGoogle Scholar
22Colthup, N.B.: Introduction to Infrared Spectroscopy (Academic, Boston, MA, 1990)Google Scholar
23Anguita, J.V., Silva, S.R.P., Burden, A.P., Sealy, B.J., Haq, S., Hebron, M., Sturland, I. and Prichard, A.: J. Appl. Phys. 86, 6276 (1999).CrossRefGoogle Scholar
24Gracía, M.M., Jiménez, I., Vázquez, L., Gómez-Aleixandre, C., Albella, J.M., Terminello, L.J. and Himpsel, F.J.: Appl. Phys. Lett. 72, 2105 (1998).CrossRefGoogle Scholar
25Gago, R., Jiménez, I. and Albella, J.M.: Surf. Sci. 482–485, 530 (2001).Google Scholar
26Francis, J.T. and Hitchcock, A.P.: J. Phys. Chem. 96, 6598 (1992).Google Scholar
27Imamura, M., Shimada, H., Matsubayashi, N., Yumura, M., Uchida, K., Oshima, S., Kuriki, Y., Yoshimura, Y., Sato, T. and Nishijima, A.: Jpn. J. Appl. Phys. Part 1, 33 L1017 (1994).Google Scholar
28Fischer, D.A., Wentzcovitch, R.M., Carr, R.G., Continenza, A. and Freeman, A.J.: Phys. Rev. B. 44, 1427 (1991).Google Scholar
29Gutiérrez, A. and López, M.F.: Europhys. Lett. 31, 1427 (1995).Google Scholar