Skip to main content Accessibility help

Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys

  • Seungjin Nam (a1), Jun Yeon Hwang (a2), Jonggyu Jeon (a3), Jihye Park (a4), Donghyun Bae (a3), Moon J. Kim (a5), Jae-Hun Kim (a1) and Hyunjoo Choi (a1)...


Nanocrystalline (NC) and ultrafine-grained (UFG) CoCrCuFeNi high-entropy alloy (HEA) with grain size ranging between 59 and 386 nm was produced via powder metallurgy and heat treatment. The as-sintered HEA exhibited two face-centered cubic (FCC) phases (CoCrFeNi-rich and Cu-rich phases) and a small grain size (59 nm), whereas the alloy after heat treatment at 1000 °C exhibited a CoCuFeNi-rich phase with FCC structure and relatively larger grain size (386 nm). Moreover, the yield strength decreased from 1930 to 883 MPa, and plastic strain to failure increased by 8–32%. In terms of microstructural evolution, grain boundary strengthening coupled with lattice distortion was the dominant strengthening mechanism for NC HEAs. Furthermore, the coefficient for boundary strengthening was higher in the HEAs than in the corresponding pure elemental metals with FCC structure, possibly because of significant lattice distortion. The UFG HEAs exhibited high strength and good ductility because of the activation of dislocation.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Gwalani, B., Soni, V., Choudhuri, D., Lee, M., Hwang, J.Y., Nam, S.J., Ryu, H., Hong, S.H., and Banerjee, R.: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys—Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr. Mater. 123, 130 (2016).
3.Tsai, M.H., Yuan, H., Cheng, G., Xu, W., Tsai, K.Y., Tsai, C.W., Jian, W.W., Juan, C.C., Shen, W.J., Chuang, M.H., Yeh, J.W., and Zhu, Y.T.: Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32, 329 (2013).
4.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).
5.Tong, C-J., Chen, Y-L., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).
6.Kumar, A., Dhekne, P., Swarnakar, A.K., and Chopkar, M.K.: Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 188, 73 (2017).
7.Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C.V., Yannetta, C.J., Chen, X., Ramanujan, R.V., Styles, M.J., Gibson, M.A., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).
8.Jiang, H., Han, K., Qiao, D., Lu, Y., Cao, Z., and Li, T.: Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 43 (2018).
9.Liu, W.H., Yang, T., and Liu, C.T.: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 2 (2018).
10.Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).
11.Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).
12.Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 676, 294 (2016).
13.Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).
14.Nam, S., Kim, M.J., Hwang, J.Y., and Choi, H.: Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 762, 29 (2018).
15.Ganji, R.S., Sai Karthik, P., Bhanu Sankara Rao, K., and Rajulapati, K.V.: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58 (2017).
16.Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).
17.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).
18.Shahmir, H., Mousavi, T., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 705, 411 (2017).
19.Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2014).
20.Chen, W., Fu, Z., Fang, S., Xiao, H., and Zhu, D.: Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854 (2013).
21.Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L.: Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333 (1990).
22.Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).
23.Koch, C.C., Morris, D.G., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).
24.Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).
25.Sun, S.J., Tian, Y.Z., Lin, H.R., Dong, X.G., Wang, Y.H., Zhang, Z.J., and Zhang, Z.F.: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122 (2017).
26.Ma, E. and Zhu, T.: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323 (2017).
27.Wu, X., Yuan, F., Yang, M., Jiang, P., Zhang, C., Chen, L., Wei, Y., and Ma, E.: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility. Sci. Rep. 5, 11728 (2015).
28.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
29.Suryanarayana, C.: Mechanical alloying and milling mechanical engineering. Prog. Mater. Sci. 46, 1 (2001).
30.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
31.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
32.Boer, F.R.: Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988).
33.Sheng, H.F., Gong, M., and Peng, L.M.: Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Mater. Sci. Eng., A 567, 14 (2013).
34.Guo, T., Li, J., Wang, J., Wang, Y., Kou, H., and Niu, S.: Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy. Intermetallics 86, 110 (2017).
35.Mao, H., Chen, H-L., and Chen, Q.: TCHEA1: A thermodynamic database not limited for “High entropy’’ alloys. J. Phase Equilib. Diffus. 38, 353 (2017).
36.He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).
37.Fang, S., Xiao, X., Xia, L., Li, W., and Dong, Y.: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).
38.Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).
39.Sonkusare, R., Janani, P.D., Gurao, N.P., Sarkar, S., Sen, S., Pradeep, K.G., and Biswas, K.: Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 269 (2018).
40.Courtney, T.H.: Mechanical Behavior of Materials (Waveland Press, Long Grove, 2005).
41.Fu, Z., Chen, W., Fang, S., Zhang, D., Xiao, H., and Zhu, D.: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).
42.Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., and Yang, S.: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des. 44, 535 (2013).
43.Joo, S-H., Kato, H., Jang, M.J., Moon, J., Kim, E.B., Hong, S-J., and Kim, H.S.: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591 (2017).
44.Ma, S.G., Zhang, S.F., Qiao, J.W., Wang, Z.H., Gao, M.C., Jiao, Z.M., Yang, H.J., and Zhang, Y.: Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics 54, 104 (2014).
45.Wu, D., Zhang, J., Huang, J.C., Bei, H., and Nieh, T.G.: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 68, 118 (2013).
46.Khan, A.S., Zhang, H., and Takacs, L.: Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plast. 16, 1459 (2000).
47.Chen, J., Lu, L., and Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).
48.Godon, A., Creus, J., Cohendoz, S., Conforto, E., Feaugas, X., Girault, P., and Savall, C.: Effects of grain orientation on the Hall–Petch relationship in electrodeposited nickel with nanocrystalline grains. Scr. Mater. 62, 403 (2010).
49.Armstrong, R., Codd, I., Douthwaite, R.M., and Petch, N.J.: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).
50.Arko, A.C. and Liu, Y.H.: The effect of atomic order on the Hall–Petch behavior in Ni3Fe. Metall. Trans. 2, 1875 (1971).
51.Williams, D.B. and Carter, C.B.: The Transmission Electron Microscope. Transmission Electron Microscopy (Springer, New York, 1996).
52.Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152 (2016).
53.Liu, J., Chen, C., Xu, Y., Wu, S., Wang, G., Wang, H., Fang, Y., and Meng, L.: Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in situ TEM study. Scr. Mater. 137, 9 (2017).
54.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
55.Wu, S.W., Wang, G., Yi, J., Jia, Y.D., Hussain, I., Zhai, Q.J., and Liaw, P.K.: Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater. Res. Lett. 5, 276 (2017).


Related content

Powered by UNSILO

Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys

  • Seungjin Nam (a1), Jun Yeon Hwang (a2), Jonggyu Jeon (a3), Jihye Park (a4), Donghyun Bae (a3), Moon J. Kim (a5), Jae-Hun Kim (a1) and Hyunjoo Choi (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.