Skip to main content Accessibility help
×
Home

Defect-mediated ferromagnetism and controlled switching characteristics in ZnO

  • Siddhartha Mal (a1), Sudhakar Nori (a1), Jagdish Narayan (a1) and John T. Prater (a2)

Abstract

We report a detailed study of the structural, chemical, electrical, and magnetic properties of undoped ZnO thin films grown under different conditions and the films that were annealed in various environments and irradiated with an ultraviolet laser. Samples prepared in low oxygen pressure or subsequently annealed in vacuum have always been strongly magnetic. Oxygen-annealed films displayed a sequential transition from the ferromagnetic to the diamagnetic state as a function of the annealing temperature. Reversible switching of room temperature ferromagnetism and n-type conductivity have been demonstrated either by annealing in different environments or by a novel laser irradiation treatment. Enhancements in both the electrical conductivity and magnetic moment have been controlled precisely with laser pulses, without altering the crystal structure. Electron paramagnetic resonance data were found to be in good agreement with the magnetization and conductivity measurements. Our secondary ion mass spectrometer and electron energy loss spectrometer studies conclusively rule out the presence of any external ferromagnetic impurities.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: smal@ncsu.edu

References

Hide All
1.Ohno, H.: Making nonmagnetic semiconductor ferromagnetic. Science 281, 951 (1998).
2.Dietl, T.: Dilute magnetic semiconductors: Functional ferromagnets. Nat. Mater. 2, 646 (2003).
3.Ramachandran, S., Tiwari, A., and Narayan, J.: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255 (2004).
4.Ueda, K., Tabata, H., and Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001).
5.Rao, C.N.R. and Deepak, F.L.: Absence of ferromagnetism in Mn and Co doped ZnO. J. Mater. Chem. 15, 573 (2005).
6.Kaspar, T.C., Droubay, T., Heald, S.M., Nachimuthu, P., Wang, C.M., Shutthanandan, V., Johnson, C.A., Gamelin, D.R., and Chambers, S.A.: Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films. New J. Phys. 10, 055010 (2008).
7.Gacic, M., Jakob, G., Herbort, C., Adrian, H., Tietze, T., Brück, S., and Goering, E.: Magnetism of Co-doped ZnO thin films. Phys. Rev. B 75, 205206 (2007).
8.Venkatesan, M., Fitzgerald, C.B., and Coey, J.M.D.: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).
9.Hong, N.H., Sakai, J., Poirot, N., and Brize, V.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 73, 132404 (2006).
10.Coey, J.M.D.: d 0 ferromagnetism. Solid State Sci. 7, 660 (2005).
11.Kim, D., Hong, J., Park, Y.R., and Kim, K.J.: The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys. Condens. Matter 21, 195405 (2009).
12.Sudaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., and Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R) (2006).
13.Panigrahy, B., Aslam, M., Misra, D.S., Ghosh, M., and Bahadur, D.: Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20, 1161 (2010).
14.Xing, G., Wang, D., Yi, J., Yang, L., Gao, M., He, M., Yang, J., Ding, J., Sum, T.C., and Wu, T.: Correlated d 0 ferromagnetism and photoluminescence in undoped ZnO nanowires. Appl. Phys. Lett. 96, 112511 (2010).
15.Kapilashrami, M., Xu, J., Strom, V., Rao, K.V., and Belova, L.: Transition from ferromagnetism to diamagnetism in undoped ZnO thin films. Appl. Phys. Lett. 95, 033104 (2009).
16.Narayan, J., Nori, S., Pandya, D.K., Avasthi, D.K., and Smirnov, A.I.: Defect dependent ferromagnetism in MgO doped with Ni and Co. Appl. Phys. Lett. 93, 082507 (2008).
17.Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., and Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (2008).
18.Potzger, K., Zhou, S., Grenzer, J., Helm, M., and Fassbender, J.: An easy mechanical way to create ferromagnetic defective ZnO. Appl. Phys. Lett. 92, 182504 (2008).
19.Smirnov, A.I. and Smirnova, T.I.: High-field ESR spectroscopy in membrane and protein biophysics, in Biological Magnetic Resonance, edited by Berliner, L.J. and Bender, C. (Kluwer, New York, 2004); Vol. 21, pp. 277348.
20.Sudhakar, C., Kharel, P., Lawes, G., Suryanarayanan, R., Naik, R., and Naik, V.M.: Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys. Condens. Matter 19, 026212 (2007).
21.Roro, K.T., Kassier, G.H., Dangbegnon, J.K., Sivaraya, S., Westraadt, J.E., Neethling, J.H., Leitch, A.W.R., and Botha, J.R.: Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition. Semicond. Sci. Technol. 23, 055021 (2008).
22.Chakraborti, D., Trichy, G., Narayan, J., Prater, J.T., and Kumar, D.: Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors. J. Appl. Phys. 102, 113908 (2007).
23.Ye, L.H., Freeman, A.J., and Delley, B.: Half-metallic ferromagnetism in Cu-doped ZnO: Density-functional calculations. Phys. Rev. B 73, 033203 (2006).
24.Cebulla, R., Weridt, R., and Ellmer, K.: Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83, 1087 (1998).
25.Rao, L.K. and Vinni, V.: Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis. Appl. Phys. Lett. 63, 608 (1999).
26.Fan, J.C.C. and Goodenough, J.B.: X-ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films. J. Appl. Phys. 48, 3524 (1977).
27.Coey, J.M.D.: Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 83 (2006).
28.Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).
29.Kim, Y.-S. and Park, C.H.: Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: Origin of n-type doping. Phys. Rev. Lett. 102, 086403 (2009).
30.Jug, K. and Tikhomirov, V.A.: Influence of intrinsic defects on the properties of zinc oxide. J. Comput. Chem. 29, 2250 (2008).
31.Lany, S. and Zunger, A.: Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Phys. Rev. B 72, 035215 (2005).
32.Janotti, A. and Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).
33.Abragam, A. and Bleaney, B.: Electron Paramagnetic Resonance of Transition ions (Dover publications Inc., New York, 1986).
34.Jain, V.K. and Lehmann, G.: Electron paramagnetic resonance of Mn2+ in orthorhombic and higher symmetry crystals. Phys. Status Solidi B Basic Res. 159, 495 (1990).
35.Dyson, F.J.: Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev. 98, 349 (1955).
36.Son, N.T., Ivanov, I.G., Kuznetsov, A., Svensson, B.G., Zhao, Q.X., Willander, M., Morishita, N., Ohshima, T., Itoh, H., Isoya, J., Janzén, E., and Yakimova, R.: Recombination centers in as-grown and electron-irradiated ZnO substrates. J. Appl. Phys. 102, 093504 (2007).
37.Wang, X.J., Vlasenko, L.S., Pearton, S.J., Chen, W.M., and Buyanova, I.A.: Oxygen and zinc vacancies in as-grown ZnO single crystals. J. Phys. D Appl. Phys. 42, 175411 (2009).
38.Galland, D. and Herve, A.: ESR spectra of the zinc vacancy in ZnO. Phys. Lett. 33A, 1 (1970).
39.Locker, D.R. and Meese, J.M.: Displacement thresholds in ZnO. IEEE Trans. Nucl. Sci. 19, 237 (1972).
40.Gonzalez, C., Galland, D., and Herv, A.: Hyperfine interactions of the F+ center in ZnO. Phys. Status Solidi B 72, 309 (1975).
41.Vlasenko, L.S. and Watkins, G.D.: Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K. Phys. Rev. B 72, 035203 (2005).
42.Kappers, L.A., Gilliam, O.R., Evans, S.M., Halliburton, L.E., and Giles, N.C.: EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO. Nucl. Instrum. Methods Phys. Res., B 266, 2953 (2008).
43.Taylor, A.L., Filipovich, G., and Lindeberg, G.K.: Identification of Cd vacancies in neutron-irradiated CdS by electron paramagnetic resonance. Solid State Commun. 8, 1359 (1970).

Keywords

Related content

Powered by UNSILO

Defect-mediated ferromagnetism and controlled switching characteristics in ZnO

  • Siddhartha Mal (a1), Sudhakar Nori (a1), Jagdish Narayan (a1) and John T. Prater (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.