Skip to main content Accessibility help
×
Home

CuO–ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO

  • Huamei Duan (a1), Yandong Li (a2), Xiangyong Lv (a1), Dengfu Chen (a1), Mujun Long (a1) and Liangying Wen (a1)...

Abstract

In this work, activated carbon was modified by ammonium persulfate and used as the catalyst support for CO2 hydrogenation to methanol. Then CuO and/or ZnO were loaded on the support by a facile wet-impregnation method. The obtained CuZn/C, Cu/C, and Zn/C catalysts were characterized by a series of characterization techniques including N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron (XPS), and scanning and transmission electron microscopies (SEM and TEM). XRD and XPS results showed that ZnO affected the reduction of Cu2+. The TEM results showed that Cu particles were 14–18 nm for the fresh catalysts CuZn/C and Cu/C. ZnO particles were too small to be identified by TEM. The used catalysts CuZn/C and Cu/C had particle sizes of 10–25 nm and 50–60 nm, respectively. The enhanced methanol synthesis performance by ZnO could be ascribed to the morphology effect and slowing down the Cu particles sintering during the reactions.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: duanhuamei@cqu.edu.cn

References

Hide All
1.Klier, K.: Methanol synthesis. In Advances in Catalysis, Eley, D.D., Pines, H., and Paul, B.W., eds. (Academic Press, Cambridge, Massachusetts, 1982); p. 243.
2.Chinchen, G., Hay, C., Vandervell, H., and Waugh, K.: The measurement of copper surface areas by reactive frontal chromatography. J. Catal. 79, 103 (1987).
3.Chinchen, G., Mansfield, K., and Spencer, M.: The methanol synthesis—How does it work. CHEMTECH 692, 20 (1990).
4.Waugh, K.: Methanol synthesis. Catal. Today 51, 15 (1992).
5.Malte Behrens, F.S.I.K.: The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893 (2012).
6.Behrens, M.: Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J. Catal. 24, 267 (2009).
7.Behrens, M., Kißner, S., Girsgdies, F., Kasatkin, I., Hermerschmidt, F., Mette, K., Ruland, H., Muhler, M., and Schlögl, R.: Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chem. Commun. 1701, 47 (2011).
8.Choi, Y., Futagami, K., Fujitani, T., and Nakamura, J.: The role of ZnO in Cu/ZnO methanol synthesis catalysts—Morphology effect or active site model? Appl. Catal., A 163, 208 (2001).
9.Fujitani, T., Saito, M., Kanai, Y., Kakumoto, T., Watanabe, T., Nakamura, J., and Uchijima, T.: The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catal. Lett. 271, 25 (1994).
10.Zander, S., Kunkes, E.L., Schuster, M.E., Schumann, J., Weinberg, G., Teschner, D., Jacobsen, N., Schlögl, R., and Behrens, M.: The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew. Chem. Int. Ed. 6536, 52 (2013).
11.Spencer, M.S.: The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction. Top. Catal. 259, 8 (1999).
12.Wang, D., Tao, F., Zhao, H., Song, H., and Chou, L.: Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging. Chin. J. Catal. 1452, 32 (2011).
13.Zhou, J. and Tsai, H-L.: Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. Int. J. Heat Mass Tran. 2217, 50 (2007).
14.Yang, Y., Brown, C.M., Zhao, C., Chaffee, A.L., Nick, B., Zhao, D., Webley, P.A., Schalch, J., Simmons, J.M., and Liu, Y.: Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon 1305, 49 (2011).
15.Liu, Y., Huang, Q., Jiang, G., Liu, D., and Yu, W.: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 3605, 32 (2017).
16.Zhou, J., Bao, L., Wu, S., Yang, W., and Wang, H.: Nitrogen-doped ordered mesoporous carbon using task-specific ionic liquid as a dopant for high-performance supercapacitors. J. Mater. Res. 404, 32 (2017).
17.Tacconi, N.R.D., Chanmanee, W., Dennis, B.H., and Rajeshwar, K.: Composite copper oxide–copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 1, 1727 (2017).
18.Duan, H., Yang, Y., Singh, R., Chiang, K., Wang, S., Xiao, P., Patel, J., Danaci, D., Burke, N., and Zhai, Y.: Mesoporous carbon-supported Cu/ZnO for methanol synthesis from carbon dioxide. Aust. J. Chem. 907, 67 (2014).
19.Duan, H., Yang, Y., Patel, J., Dumbre, D., Bhargava, S.K., Burke, N., Zhai, Y., and Webley, P.A.: A facile method to synthesis a mesoporous carbon supported methanol catalyst containing well dispersed Cu/ZnO. Mater. Res. Bull. 232, 60 (2014).
20.Palza, H., Saldias, N., Arriagada, P., Palma, P., and Sanchez, J.: Antibacterial carbon nanotubes by impregnation with copper nanostructures. JOM 1319, 69 (2017).
21.Aksoylu, A.E., Madalena, M., Freitas, A., Pereira, M.F.R., and Figueiredo, J.L.: The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 175, 39 (2001).
22.Monser, L. and Adhoum, N.: Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 137, 26 (2002).
23.Schwegler, M., Vinke, P., Van der Eijk, M., and Van Bekkum, H.: Activated carbon as a support for heteropolyanion catalysts. Appl. Catal., A 41, 80 (1992).
24.Tseng, H-H. and Wey, M-Y.: Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere 756, 62 (2006).
25.Zhu, Z.H., Radovic, L.R., and Lu, G.Q.: Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon 451, 38 (2000).
26.Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., and Chmielarz, L.: Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Mater. Res. Bull. 425, 74 (2016).
27.Podbršček, P., Orel, Z.C., and Maček, J.: Low temperature synthesis of porous copper/zinc oxide. Mater. Res. Bull. 1642, 44 (2009).
28.Flores, J.H., da Costa, M.E.H.M., and da Silva, M.I.P.: Effect of Cu–ZnO–Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation. Chin. J. Catal. 378, 37 (2016).
29.Zhang, Z. and Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2456, 22 (2012).
30.Liu, P. and Hensen, E.J.M.: Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 14032, 135 (2013).
31.Salavati-Niasari, M., Davar, F., and Khansari, A.: Nanosphericals and nanobundles of ZnO: Synthesis and characterization. J. Alloys Compd. 61, 509 (2011).
32.Grunwaldt, J.D., Molenbroek, A.M., Topsøe, N.Y., Topsøe, H., and Clausen, B.S.: In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 452, 194 (2000).
33.Chinchen, G.C., Waugh, K.C., and Whan, D.A.: The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 101, 25 (1986).
34.Rasmussen, P.B., Kazuta, M., and Chorkendorff, I.: Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surf. Sci. 267, 318 (1994).

Keywords

CuO–ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO

  • Huamei Duan (a1), Yandong Li (a2), Xiangyong Lv (a1), Dengfu Chen (a1), Mujun Long (a1) and Liangying Wen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed