Skip to main content Accessibility help

Cu2ZnSnS4 thin-film solar cell absorbers illuminated by soft x-rays

  • M. Bär (a1), B.-A. Schubert (a2), B. Marsen (a2), R.G. Wilks (a2), M. Blum (a3), S. Krause (a4), S. Pookpanratana (a4), Y. Zhang (a5), T. Unold (a6), W. Yang (a7), L. Weinhardt (a8), C. Heske (a9) and H.-W. Schock (a10)...


In view of the complexity of thin-film solar cells, which are comprised of a multitude of layers, interfaces, surfaces, elements, impurities, etc., it is crucial to characterize and understand the chemical and electronic structure of these components. Because of the high complexity of the Cu2ZnSn(S,Se)4 compound semiconductor absorber material alone, this is particularly true for kesterite-based devices. Hence, this paper reviews our recent progress in the characterization of Cu2ZnSnS4 (CZTS) thin films. It is demonstrated that a combination of different soft x-ray spectroscopies is an extraordinarily powerful method for illuminating the chemical and electronic material characteristics from many different perspectives, ultimately resulting in a comprehensive picture of these properties. The focus of the article will be on secondary impurity phases, electronic structure, native oxidation, and the CZTS surface composition.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.: 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog. Photovoltaics Res. Appl. 16, 235239 (2008).
2.Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., and Powalla, M.: New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics Res. Appl. 19, 894897 (2011).
3.Wu, X., Keane, J.C., Dhere, R.G., Dehart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., and Sheldon, P.: 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell. in Proceedings of the Seventeenth European Photovoltaic Solar Energy Conference, edited by McNelis, M.. (Munich, Germany, 2001); pp. 9951000.
4.First Solar, Inc: News releases: “First Solar Announces Second Quarter 2011 Financial Results”, Aug. 8, 2011 and “First Solar Sets World Record for CdTe Solar PV Efficiency”, July 26, 2011. (accessed August 15, 2011).
5.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (Version 38). Prog. Photovoltaics Res. Appl. 19, 565572 (2011).
6.Friedlmeier, T.M., Dittrich, H., and Schock, H.-W.: Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications. Inst. Phys. Conf. Ser. 152A, p. 345 (1998).
7.Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q., Wakahara, A., Yoshida, A., and Ogawa, H.: Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 19781981 (2005).
8.Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Maw, W.S., Fukano, T., Ito, T., and Motohiro, T.: Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008).
9.Weber, A., Krauth, H., Perlt, S., Schubert, B., Kötschau, I., Schorr, S., and Schock, H-W.: Multistage evaporation of Cu2ZnSnS4 thin films. Thin Solid Films 517, 25242526 (2009).
10.Scragg, J.J., Berg, D.M., and Dale, P.J.: A 3.2% efficient kesterite device from electrodeposited stacked elemental layers. J. Electroanal. Chem. 646, 5259 (2010).
11.Babu, G.S., Kumar, Y.K., Bhaskar, P.U., and Raja, V.S.: Effect ofpostdeposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semicond. Sci. Technol. 23, 085023 (2008).
12.Babu, G.S., Kumar, Y.K., Bhaskar, P.U., and Raja, V.S.: Effect of Cu/(Zn+Sn) ratio on the properties of coevaporated Cu2ZnSnSe4 thin films. Sol. Energy Mater. Sol. Cells 94, 221226 (2010).
13.Barkhouse, D.A., Gunawan, O., Gokmen, T., Todorov, T.K., and Mitzi, D.B.: Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se, S)4 solar cell. Prog. Photovoltaics Res. Appl. 20, 611 (2012).
14.Chen, S., Gong, X.G., Walsh, A., and Wei, S-H.: Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 94, 041903 (2009).
15.Paier, J., Asahi, R., Nagoya, A., and Kresse, G.: Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study. Phys. Rev. B 79, 115126 (2009).
16.Ichimura, M. and Nakashima, Y.: Analysis of atomic and electronic structures of Cu2ZnSnS4 based on first-principle calculation. Jpn. J. Appl. Phys. 48, 090202 (2009).
17.Persson, C.: Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010).
18.Chen, S., Walsh, A., Yang, J-H., Gong, X.G., Sun, L., Yang, P-X., Chu, J-H., and Wei, S-H.: Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011).
19.Moh, G.H.: Tin-containing mineral systems. Part II: Phase relations and mineral assemblages in the Cu-Fe-Zn-Sn-S system. Chem. Erde 34, 161 (1975).
20.Olekseyuk, I.D., Dudchak, I.V., and Piskach, L.V.: Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloys Compd. 368, 135143 (2004).
21.Schorr, S.: The crystal structure of kesterite type compounds: A neutron and x-ray diffraction study. Sol. Energy Mater. Sol. Cells 95, 14821488 (2011).
22.Katagiri, H., Ishigaki, N., Ishida, T., and Saito, K.: Characterization of Cu2ZnSnS4 thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500504 (2001).
23.Fernandes, P.A., Salomé, P.M.P., and da Cunha, A.F.: Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 76007606 (2011).
24.Fontané, X., Calvo-Barrio, L., Izquierdo-Roca, V., Saucedo, E., Pérez-Rodriguez, A., Morante, J.R., Berg, D.M., Dale, P.J., and Siebentritt, S.: In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 98, 181905 (2011).
25.Abou-Ras, D., Kirchartz, T., and Rau, U.: Advanced Characterization Techniques for Thin Film Solar Cells. (Wiley VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2011).
26.Bär, M., Schubert, B-A., Wilks, R.G., Marsen, B., Zhang, Y., Blum, M., Krause, S., Yang, W., Unold, T., Weinhardt, L., Heske, C., and Schock, H-W.: Identification of impurity phases in Cu2ZnSnS4 thin-film solar cell absorber material by soft x-ray absorption spectroscopy, in Compound Semiconductors for Energy Applications and Environmental Sustainability—2011, edited by Bell, L.D., Shahedipour-Sandvik, F., Jones, K.A., Schaadt, D., Simpkins, B.S., and Contreras, M.A. (Mater. Res. Soc. Symp. Proc. 1324, Warrendale, PA, 2011); p. 91, DOI: 10.1557/opl.2011.842.
27.Bär, M., Schubert, B-A., Marsen, B., Schorr, S., Wilks, R.G., Weinhardt, L., Pookpanratana, S., Blum, M., Krause, S., Zhang, Y., Yang, W., Unold, T., Heske, C., and Schock, H-W.: Electronic structure of Cu2ZnSnS4 probed by soft x-ray emission and absorption spectroscopy. Phys. Rev. B 84, 035038 (2011).
28.Bär, M., Schubert, B-A., Marsen, B., Krause, S., Pookpanratana, S., Unold, T., Weinhardt, L., Heske, C., and Schock, H-W.: Native oxidation and Cu-poor surface structure of thin film Cu2ZnSnS4 solar cell absorbers. Appl. Phys. Lett. 99, 112103 (2011).
29.Jia, J.J., Callcott, T.A., Yurkas, J., Ellis, A.W., Himpsel, F.J., Samant, M.G., Stoehr, J., Ederer, D.L., Carlisle, J.A., Hudson, E.A., Terminello, L.J., Shuh, D.K., and Perera, R.C.C.: First experimental results from IBM/TENN/TULANE/LLNL/LBL undulator beamline at the advanced light source. Rev. Sci. Instrum. 66, 13941397 (1995).
30.Schubert, B-A., Marsen, B., Cinque, S., Unold, T., Klenk, R., Schorr, S., and Schock, H-W.: Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog. Photovoltaics Res. Appl. 19, 9396 (2011).
31.Schorr, S., Weber, A., Honkimäki, V., and Schock, H-W.: In situ investigation of the kesterite formation from binary and ternary sulphides. Thin Solid Films 517, 2461 (2009).
32.Meisel, A., Leonhardt, G., and Szargan, R.: X-Ray Spectra and Chemical Binding, Springer Series in Chemical Physics Vol. 37 (Springer, Berlin, 1989).
33.Shishkin, M. and Kresse, G.: Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74, 035101 (2006).
34.Shishkin, M. and Kresse, G.: Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007).
35.Fuchs, F., Furthmüller, J., Bechstedt, F., Shishkin, M., and Kresse, G.: Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76, 115109 (2007).
36.Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796A823 (1965).
37.Bär, M., Nishiwaki, S., Weinhardt, L., Pookpanratana, S., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D., Shafarman, W.N., and Heske, C.: Depth-resolved band gap in Cu(In, Ga)(S, Se)2 thin films. Appl. Phys. Lett. 93, 244103 (2008).
38.Morkel, M., Weinhardt, L., Lohmüller, B., Heske, C., Umbach, E., Riedl, W., Zweigart, S., and Karg, F.: Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction. Appl. Phys. Lett. 79, 44824484 (2001).
39.Weinhardt, L., Morkel, M., Gleim, Th., Zweigart, S., Karg, F., Heske, C., and Umbach, E.: Band alignment at the CdS/CuIn(S, Se)2 heterojunction in thin film solar cells, in Proceedings of the EPVSEC-17, Munich, Germany, October 22–26, 2001, p. 1261.
40.NIST x-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003). (accessed August 15, 2011).
41.Nanobashvili, E.M., Nemsadze, T.G., and Svanidze, A.S.: Synthesis and properties thiostannates and thiostibites of zinc and cadmium. Soobs. Akad. Nauk. Gruz. SSR 63, 321324 (1971).
42.Tuttle, J.R., Albin, D.S., and Noufi, R.: Thoughts on the microstructure of polycrystalline thin-film CuInSe2 and its impact on material and device performance. Sol. Cells 30, 2138 (1991).
43.Schmid, D., Ruckh, M., Grunwald, F., and Schock, H-W.: Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J. Appl. Phys. 73, 29022909 (1993).
44.Klein, A. and Jaegermann, W.: Fermi-level-dependent defect formation in Cu-chalcopyrite semiconductors. Appl. Phys. Lett. 74, 22832285 (1999).
45.Schock, H-W. and Rau, U.: The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. Physica B 308310, 10811085 (2001).
46.Turcu, M. and Rau, U.: Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In, Ga)(Se, S)2 alloy system. Thin Solid Films 431432, 158162 (2003).
47.Gunawan, O., Todorov, T.K., and Mitzi, D.B.: Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl. Phys. Lett. 97, 233506 (2010).
48.Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S.J., Bojarczuk, N.A., Mitzi, D., and Guha, S.: Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010).
49.Turcu, M., Pakma, O., and Rau, U.: Interdependence of absorber composition and recombination mechanism in Cu(In, Ga)(Se, S)2 heterojunction solar cells. Appl. Phys. Lett. 80, 25982600 (2002).
50.Weinhardt, L., Fuchs, O., Blum, M., Bär, M., Weigand, M., Denlinger, J., Zubavichus, Y., Zharnikov, M., Grunze, M., Heske, C., and Umbach, E.: Resonant x-ray emission spectroscopy of liquid water: Novel instrumentation, high resolution, and the “map” approach. J. Electron Spectrosc. Relat. Phenom. 177, 206 (2010).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed