Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T04:15:35.726Z Has data issue: false hasContentIssue false

Cu deposition on rough ceramic substrate: Physical structure, microstructure, and resistivity

Published online by Cambridge University Press:  31 January 2011

P. Bai
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
J.F. McDonald
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
T-M. Lu
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

Cu films with a thickness around 3.5 μm have been deposited on rough Al2O3 ceramic substrates by the partially ionized beam deposition technique. While the ion bombardment parameters are similar for all depositions, the substrate temperature during deposition is varied from 50 °C to 300 °C. Physical structure of the films is studied by SEM in cross-sectional and surface geometries. X-ray diffraction 2θ scan is performed to obtain information on the microstructure of the films, such as (111) fiber texture and average crystallite size. Resistivity of the films is also measured. It has been found that the physical structure of the films varies from a typical columnar structure at 50 °C to a completely noncolumnar structure at 300 °C. The XRD results show that the films are polycrystalline and have different degrees of 〈111〉 preferred orientation, depending on the substrate temperature. The average crystallite size increases with the increase of substrate temperature. No correlation between the physical structure and microstructure of the films is observed. The resistivity of the films was also seen to change as a function of the substrate temperature. This can be explained by quantitative models in which grain and columnar boundaries in the films are responsible for the decrease in electric conductivity of the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sze, S. M., VLSI Technology (McGraw-Hill, New York, 1983), p. 571.Google Scholar
2Mei, S-N. and Lu, T-M., J. Vac. Sci. Technol. A 6, 9 (1988).CrossRefGoogle Scholar
3Bai, P., Yang, G-R., You, L., Lu, T-M., and Knorr, D. B., J. Mater. Res. 5, 989 (1990).CrossRefGoogle Scholar
4Yapsir, A. S., You, L., and Lu, T-M., J. Mater. Res. 4, 343 (1989).CrossRefGoogle Scholar
5Knorr, D. B. and Lu, T-M., Appl. Phys. Lett. 54, 2210 (1989).CrossRefGoogle Scholar
6Bai, P., Yang, G-R., and Lu, T-M., Appl. Phys. Lett. 56, 198 (1990).CrossRefGoogle Scholar
7Bai, P., Yang, G-R., Lu, T-M., and Lau, L. W. M., J. Vac. Sci. Technol. A 8, 1465 (1990).CrossRefGoogle Scholar
8Movchan, B. A. and Demchishin, A. V., Phys. of Metals and Metal-lography 28, 83 (1969).Google Scholar
9Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
10Messier, R., Giri, A. P., and Roy, R., J. Vac. Sci. Technol. A 2, 500 (1984).CrossRefGoogle Scholar
11Messier, R. and Yehoda, J. E., J. Appl. Phys. 58, 3739 (1985).CrossRefGoogle Scholar
12Mazor, A., Srolovitz, D. J., Hagan, P. S., and Bukiet, B. G., Phys. Rev. Lett. 60, 424 (1988).CrossRefGoogle Scholar
13Karunasiri, R. P. U., Bruinsma, R., and Rudnick, J., Phys. Rev. Lett. 62, 788 (1989).CrossRefGoogle Scholar
14Bales, G. S. and Zangwill, A., Phys. Rev. Lett. 63, 692 (1989).CrossRefGoogle Scholar
15Tang, C., Alexander, S., and Bruinsma, R., Phys. Rev. Lett. 64, 772 (1990).CrossRefGoogle Scholar
16Bai, P., McDonald, J. F., Lu, T-M., and Costa, M., J. Vac. Sci. Technol. A, to be published.Google Scholar
17Ehrlich, G., Proc. of IX Intern. Vacuum Congress and Fifth Intern. Conf. on Solid Surfaces, edited by de Segovia, J. L., Madrid, 3 (1983).Google Scholar
18Schlemminger, W. and Stark, D., Thin Solid Films 137, 49 (1986).CrossRefGoogle Scholar
19Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Sounders College, Philadelphia, PA, 461 (1976).Google Scholar
20Huang, T. C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. Technol. A 3, 2161 (1985).CrossRefGoogle Scholar
21Roy, R. A. and Messier, R., J. Vac. Sci. Technol. A 2, 312 (1984).CrossRefGoogle Scholar
22Thomas, R. E., Perepezko, J. H., and Wiley, J. D., J. Vac. Sci. Technol. A 8, 885 (1990).CrossRefGoogle Scholar
23Lewis, B. and Anderson, J. C., Nucleation and Growth of Thin Films (Academic Press, New York, 1978), p. 423.Google Scholar
24Maissel, L. I., Handbook of Thin Film Technology, edited by Maissel, L. I. and Glang, R. (McGraw-Hill, New York, 1983), Chap. 13.Google Scholar
25Fuchs, F., Proc. Cambridge Philos. Soc. 34, 100 (1938).CrossRefGoogle Scholar
26Mayadas, A. F. and Shatzkes, M., Phys. Rev. B 1, 1382 (1970).CrossRefGoogle Scholar
27Parmigiani, F., Kay, E., Huang, T. C., Perrin, J., Jurich, M., and Swalen, J. D., Phys. Rev. B 33, 879 (1986).CrossRefGoogle Scholar
28Pizzini, S., Cagnoni, P., and Sandrinelli, A., Appl. Phys. Lett. 51, 676 (1987).CrossRefGoogle Scholar
29Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Sounders College, Philadelphia, PA, 52 (1976).Google Scholar