Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:38:07.348Z Has data issue: false hasContentIssue false

Crystallization study of the Ta55–Ir45 amorphous alloy

Published online by Cambridge University Press:  29 June 2016

R. J. Wallace
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550
E. N. Kaufmann
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550
W. L. Bell
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550
Get access

Abstract

The crystallization behavior of an arc-melted, splat-quenched amorphous Ta55–Ir45 alloy was investigated by differential thermal analysis (DTA) and transmission electron microscopy (TEM). The DTA experiments showed that the glass transition temperature (Tg) for this material was 485 °C and that the crystallization temperature (Tx) closely followed at 495 °C. This Tx is much lower than has been previously reported. In-situ TEM annealing experiments, in addition to confirming Tx, illustrated that crystallization proceeds as a two-step process. A fcc phase is the first to crystallize at 500 °C followed by the equilibrium phases, α and σ, and/or the bcc Ta phase near 600°–650 °C. Microhardness measurements were made as part of an initial mechanical properties investigation. Inconsistencies with the work of previous investigators of this system are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ferguson, W. H. Jr., Giessen, B. C., and Grant, N. J., Trans. Metall. Soc. AIME 227, 1401 (1963).Google Scholar
2Dwight, A. E. and Beck, P. A., Trans. Metall. Soc. AIME 215, 976 (1959).Google Scholar
3Nevitt, M. V. and Downey, J. W., J. Met. 9, 1072 (1957).Google Scholar
4Fischer, M., Polk, D. E., and Giessen, B. C., Proceedings of the Conference on Rapid Solidification Processing Principles and Technologies, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor, Baton Rouge, LA, 1978), p. 140.Google Scholar
5Davis, S., Fischer, M., Giessen, B. C. and Polk, D. E., Rapidly Quenched Metals III, edited by Cantor, B. (The Metals Society, London, 1978), p. 425.Google Scholar
6Kaufmann, E. N., Peercy, P. S., Jacobson, D. C., Draper, C. W., Huegel, F. J., Echer, C. J., Makowiecki, D. M., and Balser, J. D., in the Proceedings of the Materials Research Society (Elsevier, New York, 1984), Vol. 23, p. 763.Google Scholar
7Kaufmann, E. N., Wallace, R. J., Mahin, K. W., Echer, C. J., Huegel, F. J., and Draper, C. W., Amorphous Metals and Non-equilibrium Processing, edited by Von Allmen, M. (Les Editions de Physique, Les Ulis, France, 1985), p. 59.Google Scholar
8Breinan, E. N. and Kear, B. H., Laser Materials Processing, edited by Bass, M. (North-Holland, New York, 1983), p. 235.CrossRefGoogle Scholar
9Koster, U. and Herold, U., Glassy Metals I, edited by Gontherodt, H. J. and Beck, H. (Springer, New York, 1981), p. 225.CrossRefGoogle Scholar
I0Wallace, R. J. and Kaufmann, E. N., J. Mater. Res. 1, 27 (1986).CrossRefGoogle Scholar
11Todd, A. G., Harris, P. G., Scobey, I. H., and Kelly, M. J., Solid-State Electron. 27, 507 (1984).CrossRefGoogle Scholar
12Denier van der Gon, A. W., Barbour, J. C., de Revs, R., and Saris, F. W., Thermal Stability of Thin Film Amorphous W–Ru, W–Re, and Ta–Ir Alloys, preprint 1986; A. W. Denier van der Gon, Masters thesis, University of Utrecht (unpublished).Google Scholar
13Dixmier, J., Doi, K., and Guinier, A., Physics of Noncrystalline Solids, edited by Prins, J. A. (North-Holland, Amsterdam, 1965), p. 67.Google Scholar
14Sinha, A. K. and Duwez, P., J. Phys. Chem. Solids 32, 469 (1969).Google Scholar
15Cargill, G. S., III, J. Appl. Phys. 42, 12 (1970).CrossRefGoogle Scholar
16Takayama, S., J. Mater. Sci. 11, 164 (1976).CrossRefGoogle Scholar
17Pattern #17-36, Internation Centre for Diffraction Data, Swarth-more, PA.Google Scholar
18Pattern #6-0598, in Ref. 17.Google Scholar
19Nastasi, M., Saris, F. W., Hung, L. S., and Mayer, J. W., J. Appl. Phys. 58, 3052 (1985).CrossRefGoogle Scholar
20Freed, R. L. and Vandersande, J. B., Acta Metall. 28, 103 (1980).CrossRefGoogle Scholar
21Von Heimendahl, M. and Oppolzer, H., Scr. Metall. 12, 1087 (1978).CrossRefGoogle Scholar
22Cahn, R. W., Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (North-Holland, New York, 1983), p. 1826.Google Scholar
23Cahn, R. W., Krishnanand, K. D., Laridjani, M., Greenholz, M., and Hill, R., Mater. Sci. Eng. 23, 83 (1976).CrossRefGoogle Scholar