Skip to main content Accessibility help
×
Home

Crystal structure of intermetallic phase in Fe–20Cr–4Al–0.5Y alloy by convergent beam electron diffraction

  • Raghavan Ayer (a1), J. C. Scanlon (a1), T. A. Ramanarayanan (a1), R. R. Mueller (a1), R. Petkovic-Luton (a1) and J. W. Steeds (a2)...

Abstract

The crystal structure and chemical composition of the intermetallic phase in a Fe-20%Cr-4%Al-0.5%Y (wt. %) alloy were investigated by electron microscopy. Convergent beam diffraction studies revealed that the intermetallic phase forms in three different crystal structures that could coexist in a single grain of the phase. The dominant crystal structure was shown to be hexagonal (a = 0.85, c = 0.84 nm) with a space group most likely to be P63/mmc. Within the hexagonal phase, regions of a rhombohedral crystal structure (a = 0.85, c = 1.26 nm) were observed that had grown in without an apparent phase boundary separating the two crystal structures. The third crystal structure was determined to be monoclinic (a = 0.97, b = 0.85, c = 1.07 nm, and beta = 97.3°) and formed by twinning on the {10$\overline 1$1} planes of the hexagonal phase. The chemical compositions of regions with different crystal structures were comparable and the stoichiometry of the intermetallic phase corresponds to (Fe,Cr)17 (Al,Y)2. The relationship of the observed crystal structures to those previously reported is discussed.

Copyright

References

Hide All
1Tien, J. K. and Petit, F. S., Metall. Trans. A 3, 1587 (1972).
2Kuengly, J. D. and Douglass, D. L., Oxid. Met. 8, 139 (1974).
3Golightly, F. A., Stott, F. H., and Wood, G. C., Oxid. Met. 10, 163 (1976).
4Golightly, F. A., Stott, F. H., and Wood, G. C., J. Electrochem. Soc. 126, 1035 (1979).
5Allam, I. M., Whittle, D. P., and Stringer, J., Oxid. Met. 12, 35 (1978).
6Pivin, J. C., Delaunay, D., Roques-Carmes, C., Huntz, A. M., and Lacombe, P., Corros. Sci. 20, 351 (1980).
7Delaunay, D. and Huntz, A. M., J. Mater. Sci. 17, 2027 (1982).
8Whittle, D. P. and Stringer, J., Philos. Trans. R. Soc. London Ser. A 295, 309 (1980).
9Benjamin, J. S., Metal. Trans. 1, 2943 (1970).
10Ramanarayanan, T. A., Raghavan, M., and Petkovic-Luton, R., J. Electrochem. Soc. 131, 923 (1984). UR. Ayer, T. A. Ramanarayanan, and R. Petkovic-Luton (unpublished work).
12Steeds, J. W., Introduction to Analytical Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum, New York, 1979), p. 387.
13Raghavan, M., Scanlon, J. C., and Steeds, J. W., Metal. Trans. 15, 1299 (1984).
14Buschow, K. H. J., J. Less Common Metals 11, 204 (1966).
15Florio, J. V., Baenziger, N. C., and Rundle, R. E., Acta Crystallogr. 9, 367 (1956).
16Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), p. 364.
17Johnson, Q., Smith, G. S., and Wood, D. H., Acta. Crystallogr. 258, 464 (1969).

Crystal structure of intermetallic phase in Fe–20Cr–4Al–0.5Y alloy by convergent beam electron diffraction

  • Raghavan Ayer (a1), J. C. Scanlon (a1), T. A. Ramanarayanan (a1), R. R. Mueller (a1), R. Petkovic-Luton (a1) and J. W. Steeds (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed