Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-12T17:45:51.770Z Has data issue: false hasContentIssue false

Crystal Structure and Properties of a New Organic Nonlinear Optical Material

Published online by Cambridge University Press:  31 January 2011

R. N. Rai
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei,Taiwan 10617
C. W. Lan*
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei,Taiwan 10617
*
a)Address all correspondence to this author. cwlan@ntu.edu.tw
Get access

Abstract

The single crystals of a binary organic 1:1 molecular complex were grown from different solvents. The single crystal x-ray diffraction study revealed that the binary material has crystallized with a noncentrosymmetric space group (P21) entirely different from that of the parent components. Second harmonic generation measurement on polycrystalline material shows green light emission with the molecular complex. The differential scanning calorimeter and the thermogravimetric analysis show eminent higher melting point and decomposition temperature, respectively for the binary molecular complex compared to that of urea and m-nitrobenzoic acid. The optical spectrum of newly grown crystal shows the cutoff wavelength (398 nm) near the UV region, and the micro hardness measurement confirmed the greater hardness of the binary crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thompson, J., Blyth, R.I.R., Mazzeo, M., Anni, M., Gigli, G., and Cingoloni, R., Appl. Phys. Lett. 79, 560 (2001).CrossRefGoogle Scholar
Farges, J.P., Organic conductors (Marcel Dekker, New York, 1994).Google Scholar
Klauk, H. and Jackson, T., Solid State Technol. 43, 63 (2000).Google Scholar
Gunter, P., Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, Germany, 2000).CrossRefGoogle Scholar
Bosshard, Ch., Sutter, K., Pretre, Ph., Hulliger, J., Florsheimer, M., Kaatz, P., and Gunter, P., Organic Nonlinear Optical Materials (Gorden and Breach, London, United Kingdom, 1995).Google Scholar
Jacques, J., Collet, A., and Wilen, S.H., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981).Google Scholar
Wong, M.S., Pan, F., Gramlich, V., Bosshard, C., and Gunter, P., Adv. Mater. 9, 554 (1997).CrossRefGoogle Scholar
Kato, K., IEEE J. Quantum Electron. QE–16, 810 (1980).CrossRefGoogle Scholar
Tang, C.L. and Donaldson, W.F., U.S. Patent 4 639 923 (1987).Google Scholar
Munn, R.W. and Ironside, C.N., Principles and Applications of Nonlinear Optical Materials (Chapman & Hall, London, United Kingdom, 1993).CrossRefGoogle Scholar
Rai, U.S. and Rai, R.N., Mater. Lett. 34, 67 (1998).CrossRefGoogle Scholar
Muthuraman, M., Masse, R., Nicoud, J.F., and Desiraju, G.R., Chem. Mater. 13, 1473 (2001).CrossRefGoogle Scholar
Donald, M. and Whitesides, G.M., Chem. Rev. 94, 2383 (1994).Google Scholar
Etter, M.C. and Frankenbach, G.M., Chem. Mater. 1, 10 (1989).CrossRefGoogle Scholar
Callister, W.D., Materials Science and Engineering, 5th ed. (John Wiley & Sons, New York, 2000).Google Scholar
Rai, U.S. and Rai, R.N., J. Mater. Res. 14, 1299 (1999).CrossRefGoogle Scholar
Etter, M.C., J. Phys. Chem. 95, 4601 (1991).CrossRefGoogle Scholar
Seto, C.T. and Whitesides, G.M., J. Am. Chem. Soc. 115, 1330 (1993).CrossRefGoogle Scholar
Panunto, T.W., Lipkowska, Z.U., Johnson, R., and Etter, M.C., J. Am. Chem. Soc. 109, 7786 (1987).CrossRefGoogle Scholar
Zyss, J., Nicoud, J.F., and Coquillay, M., J. Chem. Phys. 81, 4160 (1984).CrossRefGoogle Scholar
Kurtz, S.K. and Perry, T.T., J. Appl. Phys. 39, 3798 (1968).CrossRefGoogle Scholar
Marder, S.R., Perry, J.W., and Yakymyshyn, C.P., Chem. Mater. 6, 1137 (1994).CrossRefGoogle Scholar
Ferguson, H.F., Frurip, D.J., Pastor, A.J., Perrey, L.M., and Whiting, L.F., Thermochim. Acta 363, 1 (2000).CrossRefGoogle Scholar
Hans, K. and Horst, F.D., Principles of Physical Chemistry (John Wiley & Sons, New York, 1999).Google Scholar
Tao, X.T., Yuan, D.R., Zang, N., Jiang, M.H., and Shao, Z.S., Appl. Phys. Lett. 60, 1415 (1992).CrossRefGoogle Scholar