Skip to main content Accessibility help
×
Home

Crystal structure and compositional analysis of epitaxial (K0.56Na0.44)NbO3 films prepared by hydrothermal method

  • Takahisa Shiraishi (a1), Hiro Einishi (a2), Takao Shimizu (a3), Hiroshi Funakubo (a3), Minoru Kurosawa (a4), Hiroshi Uchida (a5), Nobuhiro Kumada (a6), Takanori Kiguchi (a7) and Toyohiko J. Konno (a7)...

Abstract

(KxNa1−x)NbO3 films were deposited on Nb-doped (100)SrTiO3 substrates at 240 °C for times between 1 and 6 h by a hydrothermal method. Over this time series, the measured (K + Na)/Nb ratio of the films was found to remain constant, but the bulk K/(K + Na) ratio, x, decreased from an initial value of 0.75–0.56. It was determined that film growth initially proceeded through crystallization of the K-rich phase (K0.75Na0.25)NbO3. For film growth times greater than 3 h, a second perovskite phase with a smaller unit cell volume was detected, with an estimated composition of (K0.36Na0.64)NbO3. As such, the measured bulk composition value x = 0.56 was determined to be the result of a combination of these two phases, as opposed to originating from a single phase. Cross-sectional transmission electron microscopy analyses of films prepared for 6 h revealed that they consist of two layers in the direction normal to the substrate; this bilayer-type structure, only observed for hydrothermal growth of this material, is considered to arise from the large solubility mismatch between the Nb precursor and KOH and NaOH in the growth solution.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: funakubo.h.aa@m.titech.ac.jp

References

Hide All
1.Qiu, Y., Lei, J., Yang, D., Yin, B., Zhang, H., Bian, J., Ji, J., Liu, Y., Zhao, Y., Luo, Y., and Hu, L.: Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process. Appl. Phys. Lett. 104, 113903 (2014).
2.Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).
3.Eom, C.B. and Trolier-McKinstry, S.: Thin-film piezoelectric MEMS. Mater. Res. Bull. 37, 1007 (2012).
4.Newns, D.M., Elmegreen, B.G., Liu, X-H., and Martyna, G.J.: High response piezoelectric and piezoresistive materials for fast, low voltage switching: Simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24, 3672 (2012).
5.Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Althernatives for PZT? J. Electroceram. 19, 111 (2007).
6.Muralt, P.: Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385 (2008).
7.Jaffe, B., Roth, R.S., and Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809 (1954).
8.Leontsev, S.O. and Eitel, R.E.: Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).
9.Li, J.F., Eang, K., Zhu, F.Y., Cheng, L.Q., and Yao, F.Z.: (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).
10.Liu, S.Y., Liu, S., Li, D.J., Shen, Y., Dang, H., Liu, Y., Xue, W., and Wang, S.: Structure, phase transition, and electronic properties of K1−xNaxNbO3 solid solutions from first-principles theory. J. Am. Ceram. Soc. 97, 4019 (2014).
11.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 87 (2004).
12.Kanno, I., Mino, T., Kuwajima, S., Suzuki, T., Kotera, H., and Wasa, K.: Piezoelectric properties of (K,Na)NbO3 thin films deposited on (001)SrRuO3/Pt/MgO substrates. IEEE Trans. Sonics Ultrason. 38, 256 (1991).
13.Cho, C.R. and Grishin, A.: Self-assembling ferroelectric Na0.5K0.5NbO3 thin films by pulsed-laser deposition. Appl. Phys. Lett. 75, 268 (1999).
14.Tanaka, K., Hayashi, H., Kakimoto, K., Ohsato, H., and Iijima, T.: Effect of (Na,K)-excess precursor solution on alkoxy-derived (Na,K)NbO3 powders and thin Films. Jpn. J. Appl. Phys. 46, 6964 (2007).
15.Nakashima, Y., Sakamoto, W., Shimura, T., and Yogo, T.: Chemical processing and characterization of ferroelectric (Na,K)NbO3 thin films. Jpn. J. Appl. Phys. 46, 6971 (2007).
16.Hicks, W.T.: Evaluation of vapor-pressure data for mercury, lithium, sodium, and potassium. J. Chem. Phys. 38, 1873 (1963).
17.Ishikawa, M., Yazawa, K., Fujisawa, T., Yasui, S., Yamada, T., Hasegawa, T., Morita, T., Kurosawa, M., and Funakubo, H.: Growth of epitaxial KNbO3 thick films by hydrothermal method and their characterization. Jpn. J. Appl. Phys. 47, 3824 (2008).
18.Handoko, A.D., Goh, G.K.L., and Chew, R.X.: Piezoelectrically active hydrothermal KNbO3 thin films. CrystEngComm 14, 421 (2012).
19.Goh, G.K.L. and Donthu, S.K.: Hydrothermal epitaxy of I: V perovskite thin films. Mater. Res. Soc. Symp. Proc. 718, 1 (2002).
20.Cheng, Z., Ozawa, K., Osada, M., Miyazaki, A., and Kimura, H.: Low-temperature synthesis of NaNbO3 nanopowders and their thin films from novel carbon-free precursor. J. Am. Ceram. Soc. 89, 1188 (2006).
21.Goh, G.K.L., Levi, C.G., Choi, J.H., and Lange, F.F.: Hydrothermal epitaxy of KNbO3 thin films and nanostructures. J. Cryst. Growth 286, 457 (2006).
22.Handoko, A.D. and Goh, G.K.L.: Hydrothermal synthesis of epitaxial NaxK(1−x)NbO3 solid solution films. Thin Solid Films 519, 5156 (2011).
23.Handoko, A.D. and Goh, G.K.L.: Hydrothermal growth of piezoelectrically active lead-free (Na,K)NbO3-LiTaO3 thin films. CrystEngComm 15, 672 (2013).
24.Shiraishi, T., Einishi, H., Yasui, S., Ishikawa, M., Hasegawa, T., Kurosawa, M., Uchida, H., Sakashita, Y., and Funakubo, H.: Growth of epitaxial {100}-oriented KNbO3–NaNbO3 solid solution films on (100)cSrRuO3//(100)SrTiO3 by hydrothermal method and their characterization. Jpn. J. Appl. Phys. 50, 09ND11 (2011).
25.Shiraishi, T., Einishi, H., Yasui, S., Ishikawa, M., Hasegawa, T., Kurosawa, M., Uchida, H., Sakashita, Y., and Funakubo, H.: Composition dependency of crystal structure, electrical and piezoelectric properties for hydrothermally-synthesized 3 µm-thickness (KxNa1−x)NbO3 films. J. Ceram. Soc. Jpn. 121, 627 (2013).
26.Shiraishi, T., Kaneko, N., Einishi, H., Shimizu, T., Kurosawa, M., Uchida, H., Kobayashi, T., Kiguchi, T., Konno, T. J., and Funakubo, H.: Crystal structure analysis of hydrothermally synthesized epitaxial (KxNa1−x)NbO3 films. Jpn. J. Appl. Phys. 52, 09KA11 (2013).
27.Sun, C., Xing, X., Chen, J., Deng, J., Li, L., Yu, R., Qiao, L., and Liu, G.: Hydrothermal synthesis of single crystalline (K,Na)NbO3 powders. Eur. J. Inorg. Chem. 2007e 1884 (2007).
28.Wang, Z., Gu, H., Hu, Y., Yang, K., Hu, M., Zhou, D., and Guan, J.: Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures. CrystEngComm 12, 3157 (2010).
29.Baker, D.W., Thomas, P.A., Zhang, N., and Glazer, A.M.: Structural study of KxNa1−xNbO3 (KNN) for compositions in the range x = 0.24−0.36. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 65, 22 (2009).
30.Ahtee, M. and Glazer, A.M.: Lattice parameters and tilted octahedral in sodium-potassium niobate solid solutions. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 434 (1976).
31.Ahtee, M. and Hewat, A.W.: Structure phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 309 (1978).
32.Fontana, M.D., Metrat, G., Servoin, J.L., and Gervais, F.: Infrared spectroscopy in KNbO3 though the successive ferroelectric phase transitions. J. Phys. C: Solid State Phys. 17, 483 (1984).
33.Ge, H., Hou, Y., Rao, X., Zhu, M., Wang, H., and Yan, H.: The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl. Phys. Lett. 99, 032905 (2011).
34.Ishizawa, N., Wang, J., Sakakura, T., Inagaki, Y., and Kakimoto, K.: Structural evolution of Na0.5K0.5NbO3 at high temperatures. J. Solid State Chem. 183, 2731 (2010).
35.Schiemer, J., Withers, R.L., Liu, Y., and Yi, Z.: Ferroelectric and octahedral tilt twin disorder and the lead-free piezoelectric, sodium potassium niobate system. J. Solid State Chem. 195, 55 (2012).
36.Baker, D.W., Thomas, P.A., Zhang, N., and Glazer, A.M.: A comprehensive study of the phase diagram of KxNa1−xNbO3. Appl. Phys. Lett. 95, 091903 (2009).
37.Su, L., Zhu, K., Qiu, J., and Ji, H.: Isopropanol-assisted hydrothermal synthesis of (K,Na)NbO3 piezoelectric ceramic powders. J. Mater. Sci. 45, 3311 (2010).
38.Lv, J.H., Zhang, M., Guo, M., Li, W.C., and Wang, X.D.: Hydrothermal synthesis and characterization of KxNa(1−x)NbO3 powders. J. Appl. Sci. Technol. 4, 571 (2007).
39.Zhang, F., Han, L., Bai, S., Sun, T., Karaki, T., and Adachi, M.: Hydrothermal synthesis of (K,Na)NbO3 particles. Jpn. J. Appl. Phys. 47e, 7685 (2008).
40.Handoko, A.D. and Goh, G.K.L.: Hydrothermal synthesis of sodium potassium niobate sold solutions at 200 °C. Green Chem. 12, 680 (2010).
41.Handoko, A.D. and Goh, G.K.L.: Low temperature formation of (NaxK1−x)NbO3 from hydrothermally synthesized NaNbO3. Mater. Res. Innov. 15, 352 (2011).

Keywords

Crystal structure and compositional analysis of epitaxial (K0.56Na0.44)NbO3 films prepared by hydrothermal method

  • Takahisa Shiraishi (a1), Hiro Einishi (a2), Takao Shimizu (a3), Hiroshi Funakubo (a3), Minoru Kurosawa (a4), Hiroshi Uchida (a5), Nobuhiro Kumada (a6), Takanori Kiguchi (a7) and Toyohiko J. Konno (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed