Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T01:02:34.307Z Has data issue: false hasContentIssue false

Crystal growth of layered perovskite Sr2Nb2O7 and Sr2Ta2O7 film by the sol-gel technique

Published online by Cambridge University Press:  31 January 2011

Kumi Okuwada
Affiliation:
Microelectronics Engineering Laboratory, Toshiba Corporation, Kawasaki 210-8582, Japan
Shin-ichi Nakamura
Affiliation:
Research and Development Center, Toshiba Corporation, Kawasaki 210-8582, Japan
Hiroshi Nozawa
Affiliation:
Department of Energy Science and Technology, Kyoto University, Kyoto, 606-8501, Japan
Get access

Abstract

High dielectric and low loss capacitor thin films of Sr2Nb2O7 (SN), Sr2Ta2O7 (ST), and their solid solution Sr2(Nbx, Ta1−x)2O7 (SNT) were investigated using the sol-gel technique. The SN film grows with the (0n0) orientation in the case of heating at over 700 °C. Heat treatment at a lower temperature results in the polycrystal ST-type structure. The SNT at x < 50% also resulted in the ST type. The dielectric constant for the SN film was 45, within 10% variation at ±0.5 MV/cm. Dielectric loss (tan δ) was 0.3–0.5%. The small variation in dielectric constant and the paraelectricity with low loss are suitable for capacitor applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishizawa, N., Marumo, F., Kanamura, T., and Kimura, M., Acta Crystallogr. B 31, 1912 (1975).CrossRefGoogle Scholar
2.Nakamatsu, S., Kimura, M., and Kanamura, T., J. Phys. Soc. Jpn. 38 (3), 817 (1975).CrossRefGoogle Scholar
3.Subbarao, E.C., J. Am. Ceram. Soc. 45, 166 (1962).CrossRefGoogle Scholar
4.Ishitani, A. and Kimura, M., Appl. Phys. Lett. 29 (5), 289 (1976).CrossRefGoogle Scholar
5.Prasadarao, A. V., Selvaraj, U., and Komarneni, S., J. Mater. Res. 10, 704 (1995).CrossRefGoogle Scholar
6.Okuwada, K., Imai, M., and Kakuno, K., Jpn. J. Appl. Phys. 28 (7), L1271 (1989).CrossRefGoogle Scholar
7.Okuwada, K., Nakamura, S., Imai, M., and Kakuno, K., Jpn. J. Appl. Phys. 29 (6), 1153 (1990).CrossRefGoogle Scholar
8.Okuwada, K.. Nakamura, S., Imai, M., and Kakuno, K., Jpn. J. Appl. Phys. 30 (6A), L1052 (1991).CrossRefGoogle Scholar
9.Okuwada, K. and Komatsu, S., J. Ceram. Soc. Jpn. 100 (8), 1085 (1992).CrossRefGoogle Scholar
10.Okuwada, K., Nakamura, S., Imai, M., and Kakuno, K., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1991), p. 557.Google Scholar