Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T16:19:39.771Z Has data issue: false hasContentIssue false

Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy

Published online by Cambridge University Press:  15 March 2011

Marta Pozuelo*
Affiliation:
Department of Materials Science and Engineering, University of California−Los Angeles, Los Angeles, California 90095
Christopher Melnyk
Affiliation:
California Nanotechnologies Inc., Cerritos, California 90703
Wei H. Kao
Affiliation:
Institute for Technology Advancement, University of California−Los Angeles, Los Angeles, California 90095
Jenn-Ming Yang
Affiliation:
Department of Materials Science and Engineering, University of California−Los Angeles, Los Angeles, California 90095
*
a)Address all correspondence to this author. e-mail: pozuelo@ucla.edu; marta.pozuelo@gmail.com
Get access

Abstract

The microstructure characteristics of nanocrystalline magnesium-based alloy processed by cryomilling and spark plasma sintering were investigated. The as-received and cryomilled powders and the consolidated bulk material were characterized by scanning and transmission electron microscopies, x-ray diffraction, and electron dispersive spectroscopy techniques. The cryomilled powders resulted in an average grain size of 25 nm. After spark plasma sintering, a bimodal grain size distribution with coarse grains around 500 nm and fine grains of 52 nm, which is one of the smallest grain sizes reported in bulk nanostructured Mg alloys, was found. Our results suggest this novel process as a viable method to provide new opportunities for the development of nanostructured Mg-based alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Weissmuller, J., Wollersheim, O., and Wurschum, R.: Nanocrystalline materials: A way to solids with tunable electronic structures and properties. Acta Mater. 49, 737 (2001).CrossRefGoogle Scholar
2.Champion, Y., Langlois, C., Guerin-Mailly, S., Langlois, P., Bonnentien, J.-L., and Hytch, M.J.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science. 11(300), 310 (2003).CrossRefGoogle Scholar
3.Konstantatos, G. and Sargent, E.H.: Nanostructured materials for photon detection. Nat. Nanotechnol. doi:10.1038/nnano.2010.78 (2010).Google ScholarPubMed
4.Spassov, T., Rangelova, V., and Neykov, N.: Nanocrystallization and hydrogen storage in rapidly solidified Mg–Ni–RE alloys. J. Alloy. Comp. 334, 219 (2002).CrossRefGoogle Scholar
5.Laha, T., Agarwal, A., McKechnie, T., Rea, K., and Seal, S.: Synthesis of bulk nanostructured aluminum alloy component through vacuum plasma spray technique. Acta Mater. 53, 5429 (2005).CrossRefGoogle Scholar
6.Bicelli, L.P., Bozzini, B., Mele, C., and D’Urzo, L.: A Review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 3, 356 (2008).CrossRefGoogle Scholar
7.Park, C.S., Lee, J.W., Park, G.T., Kima, H.E., and Choi, J.J.: Microstructural evolution and piezoelectric properties of thick Pb(Zr, Ti)O3 films deposited by multi-sputtering method: Part I. Microstructural evolution. J. Mater. Res. 22, 1367 (2007).CrossRefGoogle Scholar
8.Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).CrossRefGoogle ScholarPubMed
9.Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G.: Review: Processing of metals by equal channel angular pressing. J. Mater. Sci. 36, 2835 (2001).CrossRefGoogle Scholar
10.Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
11.Chua, B.W., Lu, L., and Lai, M.O.: Deformation behaviour of ultrafine and nanosize-grained Mg alloy synthesized via mechanical alloying. Philos. Mag. 86, 2919 (2006).CrossRefGoogle Scholar
12.Thein, M.A., Lu, L., and Lai, M.O.: Kinetics of grain growth in nanocrystalline magnesium-based metal–metal composite synthesized by mechanical alloying. Comput. Sci. Technol. 66, 531 (2006).CrossRefGoogle Scholar
13.Fecht, H.J.: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6, 33 (1995).CrossRefGoogle Scholar
14.Lavernia, E.J., Han, B.Q., and Schoenung, J.M.: Cryomilled nanostructured materials: Processing and properties. Mater. Sci. Eng. A 493, 207 (2008).CrossRefGoogle Scholar
15.Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
16.Tellkamp, V.L., Melmed, A., and Lavernia, E.J.: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32, 2335 (2001).CrossRefGoogle Scholar
17.Zhou, F., Liao, X.Z., Zhu, Y.T., Dallek, S., and Lavernia, E.J.: Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 51, 2777 (2003).CrossRefGoogle Scholar
18.Han, B.Q., Lavernia, E.J., and Mohamed, F.A.: Tension and compression of bulk Al-7.5 wt% Mg alloy. Philos. Mag. Lett. 83, 89 (2003).CrossRefGoogle Scholar
19.Han, B.Q., Lee, Z., Nutt, S.R., Lavernia, E.J., and Mohamed, F.A.: Mechanical properties of an ultrafine-grained Al-7.5 pct Mg alloy. Metall. Mater. Trans. A 34, 603 (2003).CrossRefGoogle Scholar
20.Ye, J., Han, B.Q., Lee, Z., Ahn, B., Nutt, S.R., and Schoenung, J.M.: A tri-modal aluminum based composite with super-high strength. Scr. Mater. 53, 481 (2005).CrossRefGoogle Scholar
21.Park, Y.S., Chung, K.H., Kim, N.J., and Lavernia, E.J.: Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng. A 374, 211 (2004).CrossRefGoogle Scholar
22.Witkin, D.B. and Lavernia, E.: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 1 (2006).CrossRefGoogle Scholar
23.Xun, Y., Lavernia, E.J., and Mohamed, F.A.: Synthesis of nanocrystalline Zn-22 Pct Al using cryomilling. Metall. Mater. Trans. 35A, 573 (2004).CrossRefGoogle Scholar
24.Riktor, M.D., Deledda, S., Herrich, M., Gutfleisch, O., Fjellvåg, H., and Hauback, B.C.: Hydride formation in ball-milled and cryomilled Mg–Fe powder mixtures. Mater. Sci. Eng. B 158, 19 (2009).CrossRefGoogle Scholar
25.Ertorer, O., Zúñiga, A., Topping, T., Moss, W., and Lavernia, E.J.: Mechanical behavior of cryomilled CP-Ti consolidated via quasi-isostatic forging. Metall. Mater. Trans. 40A, 91 (2009).CrossRefGoogle Scholar
26.Su, C.W., Lu, L., and Lai, M.O.: A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies. Mater. Sci. Eng. A 434, 227 (2006).CrossRefGoogle Scholar
27.Matsubara, K., Miyahara, Y., Horita, Z., and Langdon, T.G.: Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation. Metall. Mater. Trans. 35A, 1735 (2004).CrossRefGoogle Scholar
28.Pérez-Prado, M.T., del Valle, J.A., Contreras, J.M., and Ruano, O.A.: Microstructural evolution during large strain hot rolling of an AM60 Mg alloy. Scr. Mater. 50, 661 (2004).CrossRefGoogle Scholar
29.Pérez-Prado, M.T., del Valle, J.A., and Ruano, O.A.: Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scr. Mater. 51, 1093 (2004).CrossRefGoogle Scholar
30.Chaim, R., Shen, Z., and Nygren, M.: Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J. Mater. Res. 19, 2527 (2004).CrossRefGoogle Scholar
31.Ye, J., Ajdelsztajn, L., and Schoenung, J.M.: Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: Cryomilling and spark plasma sintering. Metal. Mater. Trans. 37A, 2569 (2006).CrossRefGoogle Scholar
32.Schoenitz, M. and Dreizin, E.: Structure and properties of Al–Mg mechanical alloys. J. Mater. Res. 18, 1827 (2003).CrossRefGoogle Scholar
33.Reed-Hill, R.E. and Robertson, W.D.: Additional modes of deformation twinning in magnesium. Acta Metall. 5, 717 (1957).CrossRefGoogle Scholar
34.Yu, Q., Shan, Z.-W., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).CrossRefGoogle ScholarPubMed
35.Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y., and Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).CrossRefGoogle ScholarPubMed
36.Sasaki, T.T., Ohkubo, T., and Hono, K.: Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3529 (2009).CrossRefGoogle Scholar
37.Zehetbauer, M.J. and Zhu, Y.T.: Bulk Nanostructured Materials (Wiley-VCH, Weinheim, 2009).CrossRefGoogle Scholar
38.Han, B.Q., Lee, Z., Witkin, D., Nutt, S., and Lavernia, E.J.: Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall. Mater. Trans. 36A, 957 (2005).CrossRefGoogle Scholar