Skip to main content Accessibility help

Creep characteristics of alumina, nickel aluminate spinel, zirconia composites

  • R. Peter Dillon (a1), Dong-Kyu Kim (a2), Joy E. Trujillo (a1), Waltraud M. Kriven (a2) and Martha L. Mecartney (a1)...


Fine grained, three-phase ceramic composites that exhibit favorable toughness, hardness, and high room-temperature strength were evaluated for high-temperature mechanical stability. A 50vol%Al2O3–25vol%NiAl2O4–25vol%3 mol%yttria-stabilized tetragonal zirconia polycrystal (3Y–TZP) and a 33vol%Al2O3–33vol%NiAl2O4–33vol%3Y-TZP composite were compression creep tested at temperatures between 1350 and 1450 °C under constant stresses of 20–45 MPa. The three-phase microstructure effectively limited grain growth (average d0 = 1.3 μm, average df = 1.6 μm after 65% true strain). True strain rates were 10−4 to 10−6 s−1 with stress exponents n = 1.7 to 1.8 and a grain-size exponent p = 1.3. A method for compensating for grain growth is presented using stress jump tests. The apparent activation energy for high-temperature deformation for 50vol%Al2O3–25vol%NiAl2O4–25vol%3Y–TZP was found to be 373 kJ/mol-K.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Dudzinski, D., Devillez, A., Moufki, A., Larrouquere, D., Zerrouki, V., Vigneau, J.: A review of developments towards dry and high speed machining of Inconel 718 alloy. Int. J. Machine Tools Manufact. 44, 439 2004
2Cain, M.Morrell, R.: Nanostructured ceramics: A review of their potential. Appl. Organomet. Chem. 15, 321 2001
3Arunachalam, R.Mannan, M.A.: Machinability of nickel-based high temperature alloys. Mach. Sci. Technol. 4, 127 2000
4Rice, R.W.: Ceramic tensile strength-grain size relations: Grain sizes, slopes, and branch intersections. J. Mater. Sci. 32, 1673 1997
5Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 1989
6Krell, A.: A new look at grain size and load effects in the hardness of ceramics. Mater. Sci. Eng., A 245, 277 1998
7Rice, R.W.: Microstructural dependence of fracture energy and toughness of ceramics and ceramic composites versus that of their tensile strengths at 22 °C. J. Mater. Sci. 31, 4503 1996
8Smith, C.S.: Grains, phases, and interfaces: An interpretation of microstructure. Trans. Am. Inst. Mining Metall. Eng. 175, 15 1948
9Lee, S.J.Kriven, W.M. A submicron-scale duplex zirconia and alumina composite by polymer complexation processing.Ceram. Eng. Sci. Proc.,20, 69 1999
10Kim, D.K.Kriven, W.M.: Processing and characterization of multi-phase ceramic composites: Part I. Duplex composites formed in-situ. J. Am. Ceram. Soc. (in press, 2007)
11Kim, D.K.Kriven, W.M.: Processing and characterization of multi-phase ceramic composites: Part II. Triplex composites with a wide sintering temperature range. J. Am. Ceram. Soc. (in press, 2007)
12Kim, D.K.Kriven, W.M.: Processing and characterization of multi-phase ceramic composites: Part III. Strong, hard and tough, high temperature, quadruplex and quintuplex composites. J. Am. Ceram. Soc. (in press, 2007)
13Chen, T.Mecartney, M.L.: Comparison of the high-temperature deformation of alumina-zirconia and alumina-zirconia-mullite composites. J. Mater. Res. 20, 13 2005
14Kim, B.N., Hiraga, K., Morita, K.Sakka, Y.: A high-strain-rate superplastic ceramic. Nature 413, 288 2001
15Chen, T.Mecartney, M.L.: A high-strain-rate alumina-based ceramic composite. J. Am. Ceram. Soc. 88, 1004 2005
16Gülgün, M.A., Nguyen, M.H.Kriven, W.M.: Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Ceram. Soc. 82, 556 1999
17Nguyen, M.H., Lee, S.J.Kriven, W.M.: Synthesis of oxide powders by way of a polymeric steric entrapment precursor route. J. Mater. Res. 14, 3417 1999
18Gülgün, M.A., Kriven, W.M.Nguyen, M.H. Processes for preparing mixed-oxide powders. U.S. Patent No. 6482387, November 19, 2002
19Thompson, A.W.: Calculation of true volume grain diameter. Metallography 5, 366 1972
20Chokshi, A.H.Porter, J.R.: Analysis of concurrent grain growth during creep of polycrystalline alumina. J. Am. Ceram. Soc. 69, C37 1986
21Rosenblatt, J.: Independent two-sample Student t tests in Basic Statistical Methods and Models for the Sciences Chapman & Hall/CRC Boca Raton, FL 2002 195
22Owen, D.M.Chokshi, A.H.: The constant stress tensile creep-behavior of a superplastic zirconia-alumina composite. J. Mater. Sci. 29, 5467 1994
23de Arellano-Lopez, A.R., Melendez-Martinez, J.J., Cruse, T.A., Koritala, R.E., Routbort, J.L.Goretta, K.C.: Compressive creep of mullite containing Y2O3. Acta Mater. 50, 4325 2002
24Venkatachari, K.R.Raj, R.: Superplastic flow in fine-grained alumina. J. Am. Ceram. Soc. 69, 135 1986
25Kim, B.N., Hiraga, K., Morita, K., Sakka, Y.Yamada, T.: Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic. Scripta Mater. 47, 775 2002
26Xue, L.A.Chen, I.W.: Deformation and grain-growth of low-temperature-sintered high-purity alumina. J. Am. Ceram. Soc. 73, 3518 1990
27Chen, T.D.Mecartney, M.L.: Superplastic compression, microstructural analysis and mechanical properties of a fine grain three-phase alumina-zirconia-mullite ceramic composite. Mater. Sci. Eng., A 410, 134 2005
28Ashby, M.F.Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 1973
29Bernard-Granger, G., Guizard, C.Duclos, R.: Compressive creep behavior in air of a slightly porous as-sintered polycrystalline α-alumina material. J. Mater. Sci. 42, 2807 2007
30Kim, B-N., Hiraga, K., Sakka, Y.Ahn, B-W.: A grain-boundary diffusion model of dynamic grain growth during superplastic deformation. Acta Mater. 47, 3433 1999
31Kottada, R.S.Chokshi, A.H.: The high temperature tensile and compressive deformation characteristics of magnesia doped alumina. Acta Mater. 48, 3905 2000
32Wang, Z.C., Davies, T.J.Ridley, N.: Net shape fabrication of ceramic specimens for superplastic tensile testing. Scripta Metall. Mater. 28, 301 1993
33French, J.D., Zhao, J.H., Harmer, M.P., Chan, H.M.Miller, G.A.: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 1994
34Oishi, Y., Ando, K.Sakka, Y.: Lattice and grain boundary diffusion coefficients of cations in stabilized zirconias in Advances in Ceramics, Vol. 7 edited by M.F. Yan and A.H. Heuer The American Ceramic Society Columbus, OH 1983 208



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed