Skip to main content Accessibility help

Conventional thermal annealing for a more efficient p-type doping of Al+ implanted 4H-SiC

  • Roberta Nipoti (a1), Raffaele Scaburri (a1), Anders Hallén (a2) and Antonella Parisini (a3)


The p-type doping of high purity semi-insulating 4H polytype silicon carbide (HPSI 4H-SiC) by aluminum ion (Al+) implantation has been studied in the range of 1 × 1019 to 8 × 1020 /cm3 (0.39 μm implanted thickness) and a conventional thermal annealing of 1950 °C/5 min. Implanted 4H-SiC layers of p-type conductivity and sheet resistance in the range of 1.6 × 104 to 8.9 ×102 Ω, corresponding to a resistivity in the range of 4.7 × 10−1 to 2.7 × 10−2 Ω cm have been obtained. Hall carrier density and mobility data in the temperature range of 140–720 K feature the transition from a valence band to an intraband conduction for increasing implanted Al ion concentration from 1 × 1019 /cm3 to 4 × 1020 /cm3. A 73% electrical activation, 31% compensation and 146 meV ionization level have been obtained using a best-fit solution of the neutrality equation to Hall carrier data for the lowest concentration.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ivanov, I.G., Henry, A., and Janzén, E.: Ionization energies of phosphorus and nitrogen donors and aluminum acceptors in 4H silicon carbide from the donor-acceptor pair emission. Phys. Rev. B 71, 241201(R) (2005).
2.Capano, M.A., Cooper, J.A. Jr., Melloch, M.R., Saxler, A., and Mitchel, W.C.: Ionization energies and electron mobilities in phosphorus- and nitrogen-implanted 4H-silicon carbide. J. Appl. Phys. 87, 8773 (2000).
3.Laube, M., Schmid, F., Pensl, G., Wagner, G., Linnarsson, M., and Maier, M.: Electrical activation of high concentrations of N+ and P+ ions implanted into 4H-SiC. J. Appl. Phys. 92, 549 (2002).
4.Nipoti, R., Nath, A., Qadri, S.B., Tian, Y-L., Albonetti, C., Carnera, A., and Rao, M.V.: High-dose phosphorus-implanted 4H-SiC: Microwave and conventional post-implantation annealing at temperatures ≥1700 °C. J. Electron. Mater. 41, 457 (2012).
5.Bockstedte, M., Mattausch, A., and Pankratov, O.: Solubility of nitrogen and phosphorus in 4H-SiC: A theoretical study. Appl. Phys. Lett. 85, 58 (2004).
6.Negoro, Y., Katsumoto, K., Kimoto, T., and Matsunami, H.: Electronic behaviors of high-dose phosphorus-ion-implanted 4H–SiC (0001). J. Appl. Phys. 96, 224 (2004).
7.Negoro, Y., Kimoto, T., Matsunami, H., Schmid, F., and Pensl, G.: Electrical activation of high-concentration aluminum implanted in 4H-SiC. J. Appl. Phys. 96, 4916 (2004).
8.Sundaresan, S.G., Rao, M.V., Tian, Y-L., Ridgway, M.C., Schreifels, J.A., and Kopanski, J.J.: Ultrahigh-temperature MWA of Al+- and P+-implanted 4H-SiC. J. Appl. Phys. 101, 073708 (2007).
9.Bluet, J.M., Pernot, J., Camassel, J., Contreras, S., Robert, J.L., Michaud, J.F., and Billon, T.: Activation of aluminum implanted at high doses in 4H–SiC. J. Appl. Phys. 88, 1971 (2000).
10.Nipoti, R., Nath, A., Rao, M.V., Hallén, A., Carnera, A., and Tian, Y-L.: Microwave annealing of very high dose aluminum-implanted 4H-SiC. Appl. Phys. Express 4, 111301 (2011).
11.Tian, Y-L.: Microwave technology for rapid thermal processing reaches ultrahigh temperatures. MRS Bull. 35, 181 (2010).
12.Linnarsson, M.K., Janson, M.S., Zimmermann, U., Svensson, B.G., Persson, P.O.Å., Hultman, L., Wong-Leung, J., Karlsson, S., Schöner, A., Bleichner, H., and Olsson, E.: Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material. Appl. Phys. Lett. 79, 2016 (2001).
13.Nipoti, R., Mancarella, F., Moscatelli, F., Rizzoli, R., Zampolli, S., and Ferri, M.: Carbon-cap for ohmic contacts on ion-implanted 4H–SiC. Electrochem. Solid-State Lett. 13, H432 (2010).
14.Nipoti, R., Moscatelli, F., Scorzoni, A., Poggi, A., Cardinali, G.C., Lazar, M., Raynaud, C., Planson, D., Locatelli, M-L., and Chante, J-P.: Contact resistivity of Al/Ti ohmic contacts on p-type ion-implanted 4H- and 6H-SiC. in Silicon Carbide 2002-Materials, Processing and Devices, edited by Saddow, S.E., Larkin, D.J., Saks, N.S., and Schoener, A. (Mater. Res. Soc. Symp. Proc. 742, Warrendale, PA, 2003) p. 303.
15.Chwang, R., Smith, B.J., and Crowell, C.R.: Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement. Solid-State Electron. 17, 1217 (1974).
16.Putley, E.H.: The Hall Effect and Semi-Conductor Physics (Dover Publications Inc., New York, 1968).
17.Schmid, F., Krieger, M., Laube, M., Pensl, G., and Wagner, G.: Hall scattering factor for electron and holes in SiC, in silicon carbide, in Silicon Carbide: Recent Major Advances, Choyke, W.J., Matsunami, H., and Pensl, G., ed. (Springer-Verlag, Berlin-Heidelberg-New York, 2004) p. 517.
18.Pernot, J., Contreras, S., and Camassel, J.: Electrical transport properties of aluminum-implanted 4H–SiC. J. Appl. Phys. 98, 023706 (2005).
19.Koizumi, A., Suda, J., and Kimoto, T.: Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers. J. Appl.Phys. 106, 013716 (2009).
20.Nath, A., Scaburri, R., Rao, M.V., and Nipoti, R.: Simulation of the temperature dependence of Hall carriers in Al doped 4H-SiC. Mat. Sci. Forum 717720, 237 (2012).
21.Schöner, A., Nordel, N., Rottner, K., Helbig, R., and Pensl, G.: Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC. Inst. Phys. Conf. Ser. 142, 493 (1996).
22.Choyke, W.J. and Pensl, G.: Physical properties of SiC. MRS Bull. 22, 25 (1997).


Related content

Powered by UNSILO

Conventional thermal annealing for a more efficient p-type doping of Al+ implanted 4H-SiC

  • Roberta Nipoti (a1), Raffaele Scaburri (a1), Anders Hallén (a2) and Antonella Parisini (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.