Skip to main content Accessibility help

Conventional and microwave sintering studies of SrTiO3

  • Horng-Yi Chang (a1), Kuo-Shung Liu (a1) and I-Nan Lin (a2)


Using the nonconventional sintering technique, such as microwave sintering, it is observed to enhance the densification rate of SrTiO3 materials as effectively as employing the highly active powders prepared by the chemical route. Although the chemically derived powders demonstrate better sinterability than the mixed oxide powders, the thermal analysis indicates that the segregation of Ti4+-containing clusters during decomposition of precursors in the direct pyrolysis (DP) process induces the occurrence of TiO2 particles (anatase phase) prior to the formation of SrTiO3 phase. These particles retard the necking process required to sinter the materials. The spray pyrolysis (SP) process can circumvent the preferential nucleation of TiO2 phase and, therefore, produce powders exhibiting superior sintering behavior to the DP-derived powders. The microwave sintering technique, on the other hand, substantially enhances the rate of diffusion of the ions in the materials such that even the mixed oxide powders can be sintered at a temperature about 200 °C lower than that needed to achieve the same density in a conventional sintering process. Fine grain (∼4 μm) microstructure is obtained for the materials microwave sintered at 1220 °C for 10 min. The migration of grain boundaries requires higher temperature to initiate than the formation of neckings between the grains. The grain growth occurs only when the material was sintered at temperatures higher than 1250 °C.



Hide All
1Okazaki, A., Soejima, Y., Ohama, N., and Muller, K. A., Jpn. J. Appl. Phys. Suppl. 24-2, 257 (1985).
2Kahn, M., Burks, D. P., Burn, I., and Schulze, W. A., in Electronic Ceramics–Properties, Devices and Applications, edited by Levinson, L. M. (Marcell Dekker, Inc., New York, 1988), p. 191.
3Yamamoto, H. and Fujiwara, S., Ceramics 20(6), 488 (1985).
4Fujimoto, M. and Kingery, W. D., J. Am. Ceram. Soc. 68(4), 169 (1985).
5Wernicke, R., in Advances in Ceramics, Vol. 1, Grain Boundary Phenomenon in Electronic Ceramics, edited by Levinson, L. M. (American Ceramics Society, Westerville, OH, 1981), p. 261.
6Correia, A. M. S. and Baptista, J. L., Mater. Sci. Eng. A109, 183 (1989).
7Kaino, D., Funayama, J., and Yamaoka, N., Jpn. J. Appl. Phys. Suppl. 24–3, 120 (1985).
8Varma, H. K., Pillai, P. K., Sreekumax, M. M., Warrier, K. G. K., and Damodaran, A. D., Br. Ceram. Trans. J. 90, 189 (1991).
9Yahagi, M. and Hashimoto, T., Electron. Ceram. 19, 39 (1988).
10Smith, J. S. II, Dolloff, R. T., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 53(2), 91 (1970).
11Kasai, T., Ozaki, Y., and Yamamoto, S., Yogyo-Kyokai-Shi 95(10), 68 (1987).
12Diaz-Guemes, M. I., Carreno, T. G., Serna, C. J., and Palacios, J. M., J. Mater. Sci. 24, 1011 (1989).
13Potdar, H. S., Deshpande, S. B., Godbole, P. D., Gunjikar, V. G., and Date, S. K., J. Mater. Res. 7, 429 (1992).
14Sakurai, O., Mizutani, N., and Kato, M., Yogyo-Kyokai-Shi 94(8), 117 (1986).
15Pechini, M. P., U.S. Patent No. 3330697, July 11, 1967.
16Ho, J. C., Liu, K. S., and Lin, I. N., J. Mater. Sci. 28, 4497 (1993).
17Chan, N-H., Sharma, R. K., and Smyth, D.M., J. Electrochem. Soc. 128(8), 1762 (1981).
18Balachandran, U. and Eror, N. G., J. Solid State Chem. 39, 351 (1981).
19Witeck, S., Smyth, D. M., and Pickup, H., J. Am. Ceram. Soc. 67(5), 372 (1984).
20Janney, M. A. and Kimrey, H. D., in Microwave Processing of Materials II, edited by Snyder, W.B. Jr., Sutton, W. H., Iskander, M. F., and Johnson, D. L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1991), p. 215.
21Katz, J. D., Blake, R. D., and Kenkre, V. M., Ceram. Trans. 21, 95 (1991).
22Reed-Hill, R. E., Physical Metallurgy Principles, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1973), Chap. 10, p. 378.

Related content

Powered by UNSILO

Conventional and microwave sintering studies of SrTiO3

  • Horng-Yi Chang (a1), Kuo-Shung Liu (a1) and I-Nan Lin (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.