Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-11T16:24:36.239Z Has data issue: false hasContentIssue false

Control of meandering grain boundary configurations in YBa2Cu3Oy bicrystal thin films based on deposition rate

Published online by Cambridge University Press:  31 January 2011

X. F. Zhang
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
D. J. Miller
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
J. Talvacchio
Affiliation:
Westinghouse Science and Technology Center, Pittsburgh, Pennsylvania 15235
Get access

Abstract

Changing the film deposition rate is shown to be one way to influence the meandering configurations of grain boundaries (GB's) formed in YBa2Cu3Oy (YBCO) bicrystal thin films. The magnitude and wavelength of the meander in YBCO films deposited at two different rates have been characterized by transmission electron microscopy (TEM) and statistically quantified. It has been found that the meander becomes more uniform and considerably less rough in films deposited at lower rates compared to that observed in films deposited at higher rates. A mechanism for the formation of the meandering GB is proposed based on heterogeneous nucleation and three-dimensional (3D) island growth together with overgrowth of the YBCO films across the substrate grain boundary. The different island sizes and tendency for overgrowth induced by changing the film deposition rate are believed to play important roles in controlling the meandering GB configuration. The possible effects of meandering configurations on transport properties are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
2. Babcock, S. E., Cai, X. Y., Larbalestier, D. C., Shin, D. H., Zhang, N., Zhang, H., Kaiser, D. L., and Gao, Y., Physica C 227, 183 (1994).CrossRefGoogle Scholar
3. Zhu, Y., Wang, Z. L., and Suenaga, M., Philos. Mag. A 67, 11 (1993).CrossRefGoogle Scholar
4. Traeholt, C., Wen, J. G., Zandbergen, H. W., Shen, Y., and Hilgenkamp, J. W. M., Physica C 230, 425 (1994).CrossRefGoogle Scholar
5. Kabius, B., Seo, J. W., Amrein, T., Dahne, U., Scholen, A., Siegel, M., Urban, K., and Schultz, L., Physica C 231, 123 (1994).CrossRefGoogle Scholar
6. Seo, J. W., Kabius, B., Dahen, D., Scholen, A., and Urban, K., Physica C 245, 25 (1995).CrossRefGoogle Scholar
7. Miller, D. J., Roberts, T. A., Kang, J.H., Talvacchio, J., Buchholz, D. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 2561 (1995).CrossRefGoogle Scholar
8. Alarco, J.A., Olsson, E., Ivanov, Z.G., Winkler, D., Stepantsov, E.A., Lebedev, O. I., Vasiliev, A. L., Tzalenchuk, A. Ya., and Kiselev, N. A., Physica C 247, 263 (1995).CrossRefGoogle Scholar
9. Talvacchio, J., Forrester, M. G., Gavaler, J. R., and Braggins, T. T., in Science and Technology of Thin Film Superconductors II, edited by McConnell, R. and Wolf, S. A. (Plenum, New York, 1990), pp. 5766.CrossRefGoogle Scholar
10. Singh, A., Chandrasekhar, N., and King, A. H., Acta Crystallogr. B 46, 117 (1990).CrossRefGoogle Scholar
11. Brandon, D. G., Acta Metall. 14, 1479 (1966).CrossRefGoogle Scholar
12. Selvamanickam, V. and Salama, K., Appl. Phys. Lett. 57, 1575 (1990).CrossRefGoogle Scholar
13. Zhu, X., Xiong, G. C., Liu, R., Li, Y. J., Lian, G. J., Li, J., and Gan, Z. Z., Physica C 216, 153 (1993).CrossRefGoogle Scholar
14. Norton, D. P., Lowndes, D. H., Zheng, X. Y., Zhu, S., and Warmack, R. J., Phys. Rev. B 44, 9760 (1991).CrossRefGoogle Scholar
15. Norton, M. G., Tietz, L. A., Summerfelt, S. R., and Carte, C. B., Appl. Phys. Lett. 55, 2348 (1989).CrossRefGoogle Scholar
16. Burmann, T., Geerk, J., Meyer, O., Schneider, R., and Linker, G., Solid State Commun. 90, 599 (1994).CrossRefGoogle Scholar
17. Miller, D. J., Steel, D. G., Yuan, F., Hettinger, J.D., Gray, K. E., Talvacchio, J., and Kang, J. H., Proceeding of 1995 International Workshop on Superconductivity, Hawaii.Google Scholar
18. Steel, D. G., Hettinger, J. D., Yuan, F., Miller, D. J., Gray, K. E., Kang, J.H., and Talvacchio, J., Appl. Phys. Lett. 68, 120 (1996).CrossRefGoogle Scholar