Skip to main content Accessibility help
×
Home

Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity

  • Xuehua Yan (a1), Xiaoxue Yuan (a2), Jinging Wang (a2), Qiong Wang (a2), Chen Zhou (a2), Dongfeng Wang (a2), Hua Tang (a2), Jianmei Pan (a2) and Xiaonong Cheng (a3)...

Abstract

A novel and highly efficient Ag3VO4/C3N4/reduced TiO2 microsphere composite was obtained through a hydrothermal and depositional process. The microstructure, individual components with different proportions, and optical properties of the ternary nanocomposites were intensively studied. The prepared ternary composites exhibited superior photocatalytic performance of degradation of methylene blue compared with single component and S1 (C3N4/reduced TiO2) binary composites, demonstrating that the introduction of Ag3VO4 into g-C3N4/r-TiO2 can effectively improve the photocatalytic activity. Recycling experiments confirmed that the nanocomposites exhibited superior cycle performance. The enhanced capability could be attributed to a synergetic effect including the formation of heterojunction, large surface area, improved light absorption, matched energy band structure, and the improved separation efficiency of photogenerated charges coming from dual Z-scheme structure. Particularly, the introduction of Ag3VO4 makes the dual Z-scheme charge transfer pathway completed with improved separation efficiency and stronger redox ability of photogenerated electrons and holes. The work provides a promising method to develop a new dual Z-scheme photocatalytic system to remove environmental pollutant.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: xhyan@mail.ujs.edu.cn

References

Hide All
1.Qi, K.Z., Xie, Y.B., Wang, R.D., Liu, S.Y., and Zhao, Z.: Electroless plating Ni–P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl. Surf. Sci. 466, 847 (2019).
2.Shahrezaei, M., Habibzadeh, S., Babaluo, A., Hosseinkhani, H., Haghighi, M., Hasanzadeh, A., and Tahmasebpour, R.: Study of synthesis parameters and photocatalytic activity of TiO2 nanostructures. J. Exp. Nanosci. 12, 45 (2017).
3.Leung, J., Warnan, J., Nam, D., Zhang, J., Willkomm, J., and Reisner, E.: Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172 (2017).
4.Qi, K.Z., Liu, S.Y., and Qiu, M.: Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 39, 867 (2018).
5.Ramírez-Ortega, D., Acevedo-Peña, P., Tzompantzi, F., Arroyo, R., González, F., and González, I.: Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. J. Mater. Sci. 52, 260 (2017).
6.Qi, K.Z., Liu, S.Y., Chen, Y., Xia, B.S., and Li, G.D.: A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 183, 193 (2018).
7.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
8.Bhanvase, B., Shende, T., and Sonawane, S.: A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 6, 1 (2017).
9.Qi, K.Z., Cheng, B., Yu, J.G., and Ho, W.K.: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).
10.Neppolian, B., Bruno, A., Bianchi, C., and Ashokkumar, M.: Graphene oxide based Pt–TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason. Sonochem. 19, 9 (2012).
11.Subramanian, V., Wolf, E., and Kamat, P.: Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).
12.Yu, X., Wu, H., Yu, L., and Luo, X.: Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 54, 4001 (2015).
13.Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).
14.Riaz, A., Qi, H., Fang, Y., Xu, J.F., Zhou, C., Jin, Z.G., Hong, Z.L., Zhi, M.J., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).
15.Wang, J., Ruan, H., Li, W., Li, D., Hu, Y., Chen, J., Shao, Y., and Zheng, Y.: Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J. Phys. Chem. C 116, 13935 (2012).
16.Simsek, E.: Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal., B 200, 309 (2017).
17.Yoo, K.: Synthesis of TiO2 materials using ionic liquids and its applications for sustainable energy and environment. J. Nanosci. Nanotechnol. 16, 4302 (2016).
18.Powella, M., Quesada-Cabreraa, R., Taylorb, A., Teixeiraa, D., Papakonstantinoub, I., Palgravea, R., Sankara, G., and Parkin, I.: Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning. Energy-saving window panels. Chem. Mater. 28, 1369 (2016).
19.Zheng, C., Li, D., Wan, J., Yu, X., and Xing, Z.: One-step synthesis of Ce–N–C–S-codoped TiO2 catalyst and its enhanced visible light photocatalytic activity. J. Nanosci. Nanotechnol. 16, 12573 (2016).
20.Zhan, Z., Tan, X., Yu, T., Jia, L., and Huang, X.: Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int. J. Hydrogen Energy 41, 11634 (2016).
21.Chen, J., Xia, Z., Li, H., Li, Q., and Zhang, Y.: Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim. Acta 166, 174 (2015).
22.Bai, X.J., Li, H.Y., Zhang, Z.Y., Zhang, X.R., Wang, C., Xu, J., and Zhu, Y.F.: Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation. Catal. Sci. Technol. 9, 1680 (2019).
23.Di Valentin, C., Pacchioni, G., and Selloni, A.: Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009).
24.Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L., Song, Y., and Sun, Z.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).
25.Lu, M., Shao, C., Wang, K., Lu, N., Zhang, X., Zhang, P., Zhang, M., Li, X., and Liu, Y.: p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 6, 9004 (2014).
26.Wang, M., Cai, L., Jin, Q., Zhang, H., Fang, S., Qu, X., Zhang, Z., and Zhang, Q.: One-pot composite synthesis of three-dimensional graphene oxide/poly(vinyl alcohol)/TiO2 microspheres for organic dye removal. Sep. Purif. Technol. 172, 217 (2017).
27.Liu, L., Luo, C., Xiong, J., Yang, Z., Zhang, Y., Cai, Y., and Gu, H.: Reduced graphene oxide (rGO) decorated TiO2 microspheres for visible-light photocatalytic reduction of Cr(VI). J. Alloys Compd. 690, 771 (2017).
28.Obregón, S. and Colón, G.: Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation. Appl. Catal., B 140, 299 (2013).
29.Qi, K.Z., Cheng, B., Yu, J.G., and Ho, W.K.: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792 (2017).
30.Qi, K.Z., Qi, H.S., Yang, J.Q., Wang, G.C., Selvaraj, R., and Zheng, W.J.: Experimental and theoretical DFT + D investigations regarding to various morphology of cuprous oxide nanoparticles: Growth mechanism of ionic liquid-assisted synthesis and photocatalytic activities. Chem. Eng. J. 324, 347 (2017).
31.Liu, J.T. and Zhang, J.B.: Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J. Mater. Res. 31, 1448 (2016).
32.Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).
33.He, K.L., Xie, J., Luo, X.Y., Wen, J.Q., Ma, S., Li, X., Fang, Y.P., and Zhang, X.C.: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).
34.Wang, S., Zhu, B.C., Liu, M.J., Zhang, L.Y., Yu, J.G., and Zhou, M.H.: Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal., B 243, 19 (2019).
35.Low, J.X., Dai, B.Z., Tong, T., Jiang, C.J., and Yu, J.G.: In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 31, 1802981 (2019).
36.Li, G., Nie, X., Jiang, Q., An, T., Wong, P., Zhang, H., Zhao, H., and Yamashita, H.: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86, 17 (2015).
37.Ma, J., Tan, X., Yu, T., and Li, X.: Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity. Int. J. Hydrogen Energy 41, 3877 (2016).
38.Li, D., Duan, X., Qin, Q., Fan, H., and Zheng, W.: Facile synthesis of novel α-Ag3VO4 nanostructures with enhanced photocatalytic activity. CrystEngComm 15, 8933 (2013).
39.Chen, Z., Bing, F., Liu, Q., Zhang, Z., and Fang, X.: Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity. J. Mater. Chem. A 3, 4652 (2015).
40.Zhang, R., Cui, H., Yang, X., Tang, H., Liu, H., and Li, Y.: Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro Nano Lett. 7, 1285 (2012).
41.Jiang, B., Jiang, L., Shi, X., Wang, W., Li, G., Zhu, F., and Zhang, D.: Ag2O/TiO2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel Sci. Technol. 73, 314 (2015).
42.Zhao, S., Xu, H., Li, H., and Xu, Y.: Photocatalytic degradation of methylene blue over Co–Ag3VO4 under visible light irradiation. Adv. Mater. Res. 335, 1385 (2011).
43.Wangkawong, K., Suntalelat, S., Tantraviwat, D., and Inceesungvorn, B.: Novel CoTiO3/Ag3VO4 composite: Synthesis, characterization and visible-light-driven photocatalytic activity. Mater. Lett. 133, 119 (2014).
44.Sun, G., Xu, H., Li, H., Shu, H., Liu, C., and Zhang, Q.: Fabrication and characterization of visible-light-induced photocatalyst Gd2O3/Ag3VO4. React. Kinet., Mech. Catal. 99, 471 (2010).
45.Wang, J., Wang, P., Cao, Y., Che, J., Li, W., Shao, Y., Zheng, Y., and Li, D.: A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Appl. Catal., B 136, 94 (2013).
46.Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., and Wang, Z.: Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 501, 156 (2017).
47.Wang, S., Li, D., Sun, C., Yang, S., Guan, Y., and He, H.: Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal., B 144, 885 (2014).
48.Li, M., Liu, H., Liu, T., and Qin, Y.: Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3+ self doped TiO2 nanocrystals with individual exposed (001) and (101) facets. Mater. Charact. 124, 136 (2017).
49.Zhou, C., Ye, N., Yan, X., Wang, J., Pan, J., Wang, D., Wang, Q., Zu, J., and Cheng, X.: Construction of hybrid Z-scheme graphitic C3N4/reduced TiO2 microsphere with visible-light-driven photocatalytic activity. J. Materiomics 4, 238 (2018).
50.Sha, D., Wang, J., Ye, N., Dai, Y., Ren, J., Chen, M., Wu, Y., Wang, Q., Tang, H., and Yan, X.: A novel and efficient synthesis of reduced TiO2/C nanocomposites with mesopores for improved visible light photocatalytic performance. Mater. Technol. 32, 451 (2017).
51.Lee, J. and Cui, X.: Facile preparation of Ti3+ self-doped TiO2 microspheres with lichi-like surface through selective etching. Mater. Lett. 175, 114 (2016).
52.Ren, J., Wu, Y., Zou, H., Dai, Y., Sha, D., Chen, M., Wang, J., Pan, J., and Yan, X.: Synthesis of a novel CeVO4/graphitic C3N4 composite with enhanced visible-light photocatalytic property. Mater. Lett. 183, 219 (2016).
53.Murugesan, S., Wijayasinghe, A., and Bergman, B.: Preparation and characterization of CuI-doped silver borovanadate superionic system. Solid State Ionics 178, 779 (2007).
54.Yu, J., Wang, S., Low, J., and Xiao, W.: Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883 (2013).
55.Ren, J., Wu, Y., Dai, Y., Sha, D., Pan, J., Chen, M., Wang, J., Wang, Q., Ye, N., and Yan, X.: Preparation and characterization of graphitic C3N4/Ag3VO4 with excellent photocatalytic performance under visible light irradiation. J. Mater. Sci.: Mater. Electron. 28, 641 (2017).
56.Wu, S., Li, K., and Zhang, W.: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324 (2015).
57.Xu, Q.L., Zhang, L.Y., Yu, J.G., Wageh, S., Ghamdi, A., and Jaroniec, M.: Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 21, 1042 (2018).
58.Le, S., Li, W., Borjigin, B., Li, G., and Wang, X.: Tetracycline removal under solar illumination over Ag3VO4/mpg-C3N4 heterojunction photocatalysts. Photochem. Photobiol. 95, 501 (2018).
59.Feng, Z., Zeng, L., Chen, Y.J., Ma, Y.Y., Zhao, C.R., Jin, R.S., Lu, Y., Wu, Y., and He, Y.M.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
60.Tang, H., Chang, S., Tang, G., and Li, W.: AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 391, 440 (2017).
61.Tang, H., Fu, Y., Chang, S., Xie, S., and Tang, G.: Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants. Chin. J. Catal. 38, 337 (2017).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed