Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-28T05:10:10.815Z Has data issue: false hasContentIssue false

Conductivity behavior of n-type semiconducting ferrites from hydrothermal powders

Published online by Cambridge University Press:  31 January 2011

Anderson Dias
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, UFMG, 30160–030, Belo Horizonte, MG, Brazil
Roberto Luiz Moreira
Affiliation:
Departamento de Física, ICEx-UFMG, CP 702, 30123–970, Belo Horizonte, MG, Brazil
Get access

Abstract

The frequency and temperature dependencies of the dielectric permittivity and of the electrical conductivity of excess ferrous ions hydrothermal NiZn ferrites were analyzed before and after sintering. A decreasing tendency with frequency of the dielectric responses was observed, but the high permittivities attained (ε′ ≈ 105) masked any relaxation in these materials. This behavior is characteristic of n-type semiconducting ferrites, where electron hopping between Fe+2 and Fe+3 ions leads to very high conductivity values. The temperature dependence of the dielectric permittivities revealed the existence of broader peaks. The electron hopping mechanism leads to a frequency dispersion of the temperature where the permittivities attain their maxima. The electrical conductivity variations with temperature exhibited Arrhenius-type behaviors, with activation energies ranging from 0.34 eV (hydrothermal powder) to 0.16 eV (for the highest sintering temperature). These results were correlated to the variations in Fe+2 concentration and microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ghate, B. B., in Advances in Ceramics Volume 1: Grain Boundary and Related Phenomena in Electronic Ceramics, edited by Levinson, L. M. (American Ceramic Society, Westerville, OH, 1981), p. 138.Google Scholar
2.Brockmann, P. G. and Matteson, K. E., J. Am. Ceram. Soc. 54, 180 (1971).CrossRefGoogle Scholar
3.De Jonghe, L. C., J. Mater. Sci. 14, 33 (1979).CrossRefGoogle Scholar
4.Largeteau, A., Miane, J. L., and Ravez, J., Phys. Status Solidi (a) 125, 697 (1991).CrossRefGoogle Scholar
5.Dias, A., Mohallem, N. D. S., and Moreira, R. L., III, J. Physique, France 6, 843 (1996).Google Scholar
6.Jankowski, S., J. Am. Ceram. Soc. 71, C176 (1988).CrossRefGoogle Scholar
7.Irvine, J. T. S., Huanosta, A., Valenzuela, R., and West, A. R., J. Am. Ceram. Soc. 73, 729 (1990).CrossRefGoogle Scholar
8.Dias, A., Moreira, R. L., and Mohallem, N. D. S., J. Phys. Chem. Solids 58, 543 (1997).CrossRefGoogle Scholar
9.Largeteau, A., Ravez, J., and Jacobs, I. S., Mater. Sci. Eng. B 8, 145 (1991).CrossRefGoogle Scholar
10.Largeteau, A., Ravez, J., and Jacobs, I. S., Mater. Sci. Eng. B 6, 33 (1990).CrossRefGoogle Scholar
11.Ferreira, A. R., Furtado, C. S., and Perdigo, J. M., J. Am. Ceram. Soc. 75, 1708 (1992).CrossRefGoogle Scholar
12.Jonscher, A. K., Dielectric Relaxation is Solids (Chelsea Dielectrics Press, London, 1983).Google Scholar
13.Ahmed, M. A., Nimr, M. K. El, Tawfik, A., and Hasab, A. M. El, J. Magn. Magn. Mater. 98, 33 (1991).CrossRefGoogle Scholar
14.Rezlescu, N. and Rezlescu, E., Phys. Status Solidi (a) 23, 575 (1974).CrossRefGoogle Scholar
15.Zyat'kov, I. I., Miroshkin, V. P., and Panova, Y. I., Sov. Phys. Sol. State 30, 748 (1988).Google Scholar
16.Ravinder, D. and Latha, K., J. Appl. Phys. 75, 6118 (1994).CrossRefGoogle Scholar
17.Gillot, B., Guendouzi, M. El, and Perriat, P., J. Mater. Sci. 26, 4808 (1991).CrossRefGoogle Scholar
18.Latha, K. and Ravinder, D., Phys. Status Solidi (a) 139, k109 (1993).CrossRefGoogle Scholar