Skip to main content Accessibility help

Computer simulation of grain growth kinetics with solute drag

  • D. Fan (a1), S. P. Chen (a2) and Long-Qing Chen (a3)


The effects of solute drag on grain growth kinetics were studied in two-dimensional (2D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity/low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent m of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent m can take any value between 2 and 3, depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system.



Hide All
1.Atkinson, H. V., Acta Metall. 36, 469 (1988).
2.Glazier, J. A., Philos. Mag. B 62, 615 (1990).
3.Fradkov, V.E., Physica D: Nonlinear Phenomena 66, 50 (1993).
4.Martin, J. W. and Doherty, R. D., in Stability of Microstructure in Metallic Systems (Cambridge University Press, 1976), p. 228.
5.Guttmann, M. and Mclean, D., Interface Segregation, edited by Johnson, W.C. and Blakely, D. M. (Am. Soc. Metal, Metals Park, OH, 1977), pp. 261350.
6.Cahn, J. W., Acta Metall. 10, 789 (1962).
7.Hillert, M. and Sundman, B., Acta Metall. 24, 731 (1976).
8.Krzanowski, J. E. and Allen, S. M., Surf. Sci. 144, 153 (1984).
9.Krzanowski, J. E. and Allen, S. M., Acta Metall. 34, 1035 (1986).
10.Krzanowski, J. E. and Allen, S. M., Acta Metall. 34, 1045 (1991).
11.Krzanowski, J. E. and Allen, S. M., Acta Metall. 31, 213 (1983).
12.Brook, R. J. in Ceramic Fabrication Processes, edited by Wang, F. F. Y. (Academic Press, New York, 1976), p. 331.
13.Fan, D. and Chen, L-Q., Acta Mater. 45, 611622 (1997);
Fan, D. and Chen, L-Q.Acta Mater. 45, 11151126 (1997).
14.Chen, L-Q. and Yang, W., Phys. Rev. B 50, 15752 (1994).
15.Fan, D. and Chen, L-Q., Acta Mater. 45, 32973310 (1997).
16.Fan, D. and Chen, L-Q., J. Am. Ceram. Soc. 79, 1163 (1997).
17.Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).
18.Allen, S.M. and Cahn, J. W., Acta Metall. 27, 1085 (1979).
19.Cahn, J. W., Acta Metall. 9, 795 (1961).
20.Fan, D., Ph.D. Dissertation, The Pennsylvania State University (1996), pp. 6983.
21.Fan, D. and Chen, L-Q., Philos. Mag. Lett. 75, 187 (1997).
22.Hondros, E.D. and Seah, M.P., Physical Metallurgy, 3rd ed., edited by Cahn, R.W. and Haasen, P. (North-Holland, Amsterdam, 1983), p. 855.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed