Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-25T23:58:44.402Z Has data issue: false hasContentIssue false

Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion

Published online by Cambridge University Press:  31 January 2011

Y. M. Wang
Affiliation:
State Key Laboratory for Materials Modification and Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China, and Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
J. B. Qiang
Affiliation:
State Key Laboratory for Materials Modification and Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
C. H. Wong
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
C. H. Shek
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
C. Dong*
Affiliation:
State Key Laboratory for Materials Modification and Department of Materials Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
*
a)Address all correspondence to this author. e-mail: dong@dlut.edu.cn
Get access

Abstract

This paper aims at establishing a number of electrons/atom (e/a)-based criterion for searching bulk metallic glasses (BMGs) and quasicrystals with large forming abilities in the Zr-based multicomponent alloy systems. After discussions on the diffraction characteristics corresponding to the Fermi surfaces-Brillouin zone interaction in the Zr-based Hume-Rothery phases, the Hume-Rothery matching rule is well explained when the effective e/a value of the matrix element Zr is taken as 1.5. The BMG- and quasicrystal-related phases are pointed out to be a family of nearly e/a-constant phases in a given alloy system. An e/a-constant criterion is then used to predict the ideal composition of the quasicrystals and BMGs in the Zr-Ti-Ni, Zr-Al-Ni, and Zr-Al-Ni-Cu systems, respectively. Nearly pure bulk Zr-Ti-Ni quasicrystals and a series of BMGs with glass-forming abilities greater than that of the known Zr65Al7.5Ni10Cu17.5 alloy are found.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mott, N.F. and Jones, H., The Theory of the Properties of Metals and Alloys (Oxford University Press, Oxford, U.K., 1936).Google Scholar
2.Barret, C. and Massalski, T.B., Structure of Metals (McGraw Hill, New York, 1966).Google Scholar
3.Massalski, T.B. and Mizutani, U., Prog. Mater. Sci. 22, 151 (1978).CrossRefGoogle Scholar
4.Nagel, S.R. and Tauc, J., Phys. Rev. Lett. 35, 380 (1975).CrossRefGoogle Scholar
5.Haussler, P., Phys. Rep. 222, 65 (1992).CrossRefGoogle Scholar
6.Fujiwara, T. and Yokokawa, T., Phys. Rev. Lett. 66, 333 (1991).CrossRefGoogle Scholar
7.Hafner, J. and Krajci, M., Phys. Rev. B 47, 11795 (1993).CrossRefGoogle Scholar
8.Mizutani, U., Takeuchi, T., and Sato, H., Prog. Mater. Sci. (2003, to be published).Google Scholar
9.Peker, A.L. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
10.Inoue, A., Zhang, T., and Masumoto, T., J. Non-Cryst. Solids 156–158, 473 (1993).CrossRefGoogle Scholar
11.Köster, U., Meihardt, J., Roos, S., and Liebertz, H., Appl. Phys. Lett. 69, 179 (1996).CrossRefGoogle Scholar
12.Kelton, K.F., Kim, W.J., and Stroud, R.M., Appl. Phys. Lett. 70, 3230 (1997).CrossRefGoogle Scholar
13.Wanderka, N., Macht, M-P., Seidel, M., Mechler, S., Appl. Phys. Lett. 77, 3935 (2000).CrossRefGoogle Scholar
14.Dong, C., Perrot, A., Dubois, J-M., Belin, E., Mater. Sci. Forum 150–151, 403 (1994).CrossRefGoogle Scholar
15.Dong, C., Scr. Metall. Mater. 33, 239 (1995).CrossRefGoogle Scholar
16.Qiang, J-B., Wang, D-H., Bao, C-M., Wang, Y-M., Xu, W-P., Song, M-L., and Dong, C., J. Mater. Res. 16, 2653 (2001).CrossRefGoogle Scholar
17.Mayou, D., Cyrot-Lackmann, F., Laissardiére, G. Trambly de, and Klein, T., J. Non-Cryst. Solids 153–154, 412 (1993).CrossRefGoogle Scholar
18.Laissardiére, G. Trambly de, Manh, D. Nguyen, Magaud, L., Julien, J.P., Cyrot-Lackmann, F., and Mayou, D., Phys. Rev. B 52, 7920 (1995).CrossRefGoogle Scholar
19.Friedel, J., Helv. Phys. Acta 61, 538 (1988).Google Scholar
20.Pettifor, D.G., J. Phys. F: Met. Phys. 7, 613 (1977).CrossRefGoogle Scholar
21.Vohra, Y.K., Sikka, S.K., and Chidambaram, R., J. Phys. Met. Phys. 9, 1771 (1979).CrossRefGoogle Scholar
22.Miedema, A.R., J. Less-Common Met. 32, 117 (1973).CrossRefGoogle Scholar
23.Güntherodt, H-J., Künzi, H.U., Liard, M., Müller, R., Oberle, R., and Rudin, H., Inst. Phys. Conf. Ser. 30, 342 (1977).Google Scholar
24.Johannes, R.L., Haydock, R., and Heine, V., Phys. Rev. Lett. 36, 372 (1976).CrossRefGoogle Scholar
25.Massalski, T.B. and King, H.W., Prog. Mater. Sci. 10, 1 (1961).Google Scholar
26.Moruzzi, V.L., Oelhafen, P., Willams, A.R., Lapka, R., Gütherodt, H-J., Phys. Rev. B 27, 2049 (1983).CrossRefGoogle Scholar
27.Taylor, W.H., Acta Metall. 2, 684 (1954).CrossRefGoogle Scholar
28.Shek, C.H., Wang, Y.M., and Dong, C., Mater. Sci. Eng. A 291, 78 (2000).CrossRefGoogle Scholar
29.Köster, U., Meihardt, J., Roos, S., and Rüdiger, A., Mater. Sci. Forum 225–227, 311 (1996).CrossRefGoogle Scholar
30.Dong, C., Hei, Z.K., Song, Q.H., Wang, L.B., Wu, Y.K., and Kuo, K.H., Scr. Met. 20, 1155 (1986).CrossRefGoogle Scholar
31.Qiang, J.B., Wang, Y.M., Wang, D.H., Kramer, M., Thiel, P., Dong, C., J. Non-Cryst. Solids (to be published).Google Scholar
32.Kim, W.J., Gibbons, P.C., and Kelton, K.F., Philos. Mag. Lett. 76, 199 (1997).CrossRefGoogle Scholar
33.Saida, J., Matsushita, M., and Inoue, A., J. Mater. Res. 16, 28 (2001).CrossRefGoogle Scholar
34.Kim, W.J., Gibbons, P.C., and Kelton, K.F., Philos. Mag. A 78, 1111 (1998).CrossRefGoogle Scholar
35.Kim, W.J., Gibbons, P.C., and Kelton, K.F., Phys. Rev. B 58, 2578 (1998).CrossRefGoogle Scholar
36.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 31, 177 (1990).CrossRefGoogle Scholar
37.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 32, 1005 (1991).Google Scholar