Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T11:13:50.567Z Has data issue: false hasContentIssue false

Complex microshaping of bulk metallic glass surfaces by electrochemical means

Published online by Cambridge University Press:  25 November 2015

Sylvia Horn
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, Institute of Complex Materials, D-01069 Dresden, Germany
Steffen Oswald
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, Institute of Complex Materials, D-01069 Dresden, Germany
Mihai Stoica
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, Institute of Complex Materials, D-01069 Dresden, Germany
Margitta Uhlemann
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, Institute of Complex Materials, D-01069 Dresden, Germany
Annett Gebert*
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, Institute of Complex Materials, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: a.gebert@ifw-dresden.de
Get access

Abstract

Electrochemical micromachining (ECMM) with microtool electrodes is a promising method for microshaping bulk metallic glasses (BMGs) at room temperature. A key challenge is the control of the electrode reactions to impede the disturbing passive layer formation on machined surface regions. In the example case of a Fe-based glassy Fe65.5Cr4Mo4Ga4P12C5B5.5 alloy, it will be demonstrated that by using an aqueous electrolyte based on 0.1 M H2SO4 solution with up to 0.1 M Fe2(SO4)3 addition and by applying ultrashort voltage pulses, complex microstructures can be machined with high precision. Potentiodynamic polarization measurements reveal that the salt addition reduces the charge transfer resistance of the microtool and therefore, the negative bias potential effect. The free corrosion and passive state of the BMG workpiece are affected, but not the transpassive regime. Systematic ECMM studies were conducted to obtain optimum parameters for shaping complex lateral structures with very smooth and well-defined machining areas.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of metal research. MRS Bull. 32(8), 611619 (2007).CrossRefGoogle Scholar
Roth, S., Stoica, M., Degmová, J., Gaitzsch, U., Eckert, J., and Schultz, L.: Fe-based bulk amorphous soft magnetic materials. J. Magn. Magn. Mater. 304(2), 192196 (2006).Google Scholar
Inoue, A. and Nishiyama, N.: New bulk metallic glasses for applications as magnetic-sensing, chemical and structural materials. MRS Bull. 32(8), 651658 (2007).Google Scholar
Kumar, G., Tang, H.X., and Schroers, J.: Nanomoulding with amorphous metals. Nature 457, 868872 (2009).Google Scholar
Lin, H-K., Lee, C-J., Hu, T-T., Li, C-H., and Huang, J.C.: Pulsed laser micromachining of Mg–Cu–Gd bulk metallic glass. Opt. Laser Eng. 50, 883886 (2012).CrossRefGoogle Scholar
Landolt, D., Chauvy, P-F., and Zinger, O.: Electrochemical micromachining, polishing and surface structuring of metals: Fundamental aspects and new developments. Electrochim. Acta 48(20–22), 31853201 (2003).Google Scholar
Schuster, R., Kirchner, V., Allongue, P., and Ertl, G.: Electrochemical micromachining. Science 289(5476), 98101 (2000).Google Scholar
Cagnon, L., Kirchner, V., Kock, M., Schuster, R., Ertl, G., Gmelin, W.T., and Kück, H.: Electrochemical micromachining of stainless steel by ultrashort voltage pulses. Z. Phys. Chem. 217, 299 (2003).CrossRefGoogle Scholar
Kock, M., Kirchner, V., and Schuster, R.: Electrochemical micromachining with ultrashort voltage pulses—a versatile methode with lithographical precision. Electrochim. Acta 48(20–22), 32133219 (2003).Google Scholar
Maurer, J.J., Mallett, J.J., Hudson, J.L., Fick, S.E., Moffat, T.P., and Shaw, G.A.: Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses. Electrochim. Acta 55(3), 952958 (2010).Google Scholar
Sjöström, T. and Su, B.: Micropatterning of titanium surfaces using electrochemical micromachining with ethylene glycol electrolyte. Mater. Lett. 65, 34863492 (2011).Google Scholar
Koza, J.A., Sueptitz, R., Uhlemann, M., Schultz, L., and Gebert, A.: Electrchemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique. Intermetallics 19, 437444 (2011).Google Scholar
Sueptitz, R., Tschulik, K., Becker, C., Stoica, M., Uhlemann, M., Eckert, J., and Gebert, A.: Micropatterning of Fe-based bulk metallic glass surfaces by pulsed electrochemical micromachining. J. Mater. Res. 27(23), 30333040 (2012).CrossRefGoogle Scholar
Sueptitz, R., Dunne, P., Tschulik, K., Uhlemann, M., Eckert, J., and Gebert, A.: Electrochemical micromachining of passive electrodes. Electrochim. Acta 109, 562569, 2013.Google Scholar
Stoica, M., Eckert, J., Roth, S., Yavari, A.R., and Schultz, L.: Fe65.5Cr4Mo4Ga4P12C5B5.5 BMGs: Sample preparation, thermal stability and mechanical properties. J. Alloys Compd. 434435, 171175 (2007).CrossRefGoogle Scholar
Sueptitz, R., Horn, S., Stoica, M., Uhlemann, M., and Gebert, A.: Electrochemical micromachining of passive electrodes—application to bulk metallic glasses. J. Mater. Process. Technol. 219, 193198 (2015).Google Scholar
Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D.: Handbook of X-ray Photo-electron Spectroscopy (Perkin-Elmer Corp, Physical Electronics Division, Eden Prairie, Minnesota, 1993).Google Scholar
Chattoraj, I., Baunack, S., Stoica, M., and Gebert, A.: Electrochemical response of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy in different aqueous media. Mater. Corros. 55(1), 3642 (2004).Google Scholar
Ghoshal, B. and Bhattacharyya, B.: Shape control in micro borehole generation by EMM with assistance of vibration of tool. Precis. Eng. 38, 127137 (2014).Google Scholar
Lin, Y. and Huang, S.: Experimental study of complex structures machining with an electrochemical micromachining system. Recent Pat. Mech. Eng. 7(2), 183190 (2014).Google Scholar
Gebert, A., Mummert, K., Eckert, J., Schultz, L., and Inoue, A.: Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Mater. Corros. 48, 293297 (1997).Google Scholar
Gostin, P., Oswald, S., Schultz, L., and Gebert, A.: Acid corrosion process of Fe-based bulk metallic glasses. Corros. Sci. 62, 112121 (2012).Google Scholar