Skip to main content Accessibility help

Comparison of citrate–nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet

  • P. Sujatha Devi (a1), Yongjae Lee (a2), Joshua Margolis (a1), John B. Parise (a3), Sanjay Sampath (a1), Herbert Herman (a1) and Jonathan C. Hanson (a4)...


The influence of synthesis conditions on the formation of yttrium aluminum garnet (YAG) powders starting from the same solution precursors was investigated by employing a citrate–nitrate gel combustion process and a precursor plasma spraying technique. YAG powders were formed at ≥500 °C, through the citrate–nitrate gel combustion process, without any intermediate phase formation. Time-resolved x-ray experiments were performed for the first time on these citrate–nitrate precursor materials to understand their mode of decomposition. The in situ data confirmed a single-step conversion to YAG from the precursor powder without any intermediate phase formation. Ex situ experiments also produced similar results. However, the use of the same citrate–nitrate precursor solution as a liquid feedstock material in the precursor plasma spraying technique revealed an entirely different transformation mechanism to YAG through intermediate phases like H–YalO3 and O–YalO3.


Corresponding author

a) Address all correspondence to this author.


Hide All
1.Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci. Lett. 9, 527 (1974).
2.Corman, G.S., Ceram. Eng. Sci. Proc. 12, 1745 (1991).
3.Parthasarathy, T.A., Mah, T., and Keller, K., Ceram. Eng. Sci. Proc. 12, 1767 (1991).
4.Yan, M.F., Huo, T.C.D., and Ling, H.C., J. Electrochem. Soc. 134, 493 (1987).
5.Gowda, G., J. Mater. Sci. Lett. 5, 1029 (1986).
6.Veith, M., Mathur, S., Kareiva, A., Jilavi, M., Zimmer, M., and Huch, V., J. Mater. Chem. 79, 385 (2000).
7.Inone, M., Otsu, H., Kominami, H., and Insui, T., J. Am. Ceram. Soc. 74, 1452 (1991).
8.Kamat, R.V., Pillai, K.T., Vaidya, V.N., and Sood, D.D., Mater. Chem. Phys. 46, 67 (1998).
9.Liu, Y., Zhang, Z.F., King, B., Halloran, J., and Laine, R.M., J. Am. Ceram. Soc. 79, 385 (1996).
10.Cinibulk, M.K., J. Am. Ceram. Soc. 83, 1276 (2000).
11.Li, J.G., Ikegami, T., Lee, J.H., and Mori, T., J. Mater. Res. 15, 1515 (2000).
12.Lu, Q., Dong, W., Wang, H., and Wang, X., J. Am. Ceram. Soc. 85, 490 (2002).
13.Wang, H., Gao, L., and Niihara, K., Mater. Sci. Eng. A 288 (2000).
14.Nyman, M., Caruso, J., Smith, M.H., and Kodas, T.T., J. Am. Ceram. Soc. 80, 1231 (1997).
15.Iida, Y., Towata, A., Tsugoshi, T., and Furukawa, M., Vib. Spectrosc. 19, 399 (1999).
16.Parukuttyamma, S.D., Margolis, J., Liu, H., Grey, C.P., Sampath, S., Herman, H., and Parise, J.B., J. Am. Ceram. Soc. 84, 1906 (2001).
17.Devi, P.S. and Maiti, H.S., J. Mater. Res. 9, 1357 (1994).
18.Chakraborty, A., Devi, P.S., Roy, S., and Maiti, H.S., J. Mater. Res. 9, 986 (1994).
19.Chakraborty, A., Devi, P.S., and Maiti, H.S., J. Mater. Res. 10, 918 (1995).
20.Yue, Z., Li, L., Zhou, J., Zhang, H., and Gui, Z., Mater. Sci. Eng. B64, 68 (1999).
21.Karthikeyan, J., Berndt, C.C., Reddy, S., Wang, J.Y., King, A.H., and Herman, H., J. Am. Ceram. Soc. 81, 121 (1998).
22.Hammersely, A.P., ESRF internal report, ESRF97HA02TFIT2D (1997).
23.Hammersely, A.P., Svensson, S.O., and Thompson, A., Nucl. Instrum. Methods A345, 312 (1994).
24. Powder Diffraction File No. 33-40, International Centre for Diffraction Data, Newton Square, PA.
25. Powder Diffraction File No. 16-219, International Centre for Diffraction Data, Newton Square, PA.
26.Kinsman, K.M. and Mc, J.Kittrick, J. Am. Ceram. Soc. 77, 2866 (1994).
27.Roy, S., Wang, L., Sigmund, W., and Aldinger, F., Mater. Lett. 39, 138 (1999).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed