Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T09:23:20.772Z Has data issue: false hasContentIssue false

Combustion synthesis of MoSi2-Mo5Si3 composites

Published online by Cambridge University Press:  03 March 2011

J. Subrahmanyam
Affiliation:
Combustion Synthesis Group, Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500258, India
Get access

Abstract

Thermochemical calculations were carried out for the Self-propagating High-temperature Synthesis (SHS) of MoSi2, Mo5Si3, and their composites. Adiabatic temperatures and the amounts of liquid phases formed at the adiabatic temperature were calculated for different initial temperatures. These materials were prepared from elemental powders of Mo and Si by the thermal explosion mode of SHS. The products were characterized by x-ray diffraction, scanning electron microscopy, and microhardness. The larger particle morphology of MoSi2 and the MoSi2-Mo5Si3 composite and the finer morphology of Mo5Si3 can be explained in terms of the presence of transient liquid phase at the adiabatic temperature. The morphology of fracture surface of MoSi2 shows intergranular fracture, while Mo5Si3 and the MoSi2-Mo5Si3 composite show transgranular cleavage fracture.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fitzer, E. and Remmele, W., in Proc. Int. Conf. on Composite Materials, ICCM-V, edited by Harrigan, W. C. Jr., Strife, J., and Dhingra, A. K. (AIME Publishers, Warrendale, PA, 1985), p. 515.Google Scholar
2Schlichting, J., High Temp.–High Press. 10, 241 (1978).Google Scholar
3Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68, C 200 (1985).CrossRefGoogle Scholar
4Meschter, P. J. and Schwartz, D. S., J. Metals 41 (11), 52 (1989).Google Scholar
5Yang, J. M. and Jeng, S. M., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 139.Google Scholar
6Bhattacharya, A. K. and Petrovic, J. J., J. Am. Ceram. Soc. 75, 23 (1992).CrossRefGoogle Scholar
7Vasudévan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 1 (1992).CrossRefGoogle Scholar
8Schwarz, R. B., Srinivasan, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci. Eng. A155, 75 (1992).CrossRefGoogle Scholar
9Wade, R. K. and Petrovic, J. J., J. Am. Ceram. Soc. 75, 3160 (1992).CrossRefGoogle Scholar
10Patankar, S. N., Xiao, S-Q., Lewandowski, J. J., and Heuer, A. H., J. Mater. Res. 8, 1311 (1993).CrossRefGoogle Scholar
11Jayashankar, S. and Kaufman, M. J., J. Mater. Res. 8, 1428 (1993).CrossRefGoogle Scholar
12Petrovic, J. J., Honnel, R. E., and Vasudévan, A. K., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 123.Google Scholar
13Carter, D. H. and Martin, P. L., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 131.Google Scholar
14Anton, D. L. and Shah, D. M., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 733.Google Scholar
15Gibala, R., Ghosh, A. K., Van Aken, D. C., Srolovitz, D. J., Basu, A., Chang, H., Mason, D. P., and Yang, W., Mater. Sci. Eng. A155, 147 (1992).CrossRefGoogle Scholar
16Mason, D. P. and Van Aken, D. C., Scripta Metall. 28, 185 (1993).CrossRefGoogle Scholar
17Subrahmanyam, J. and Vijayakumar, M., J. Mater. Sci. 27, 6249 (1992).CrossRefGoogle Scholar
18Sarkisyan, A. R., Dulokhanyan, S. K., Borovinskaya, I. P., and Merzhanov, A. G., Fiz. Goreniya i Vzryva 14 (3), 49 (1978).Google Scholar
19Deevi, S. C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
20Deevi, S. C., Mater. Sci. Eng. A149, 241 (1992).CrossRefGoogle Scholar
21Ranganath, S., Vijayakumar, M., and Subrahmanyam, J., Mater. Sci. Eng. A149, 253 (1992).CrossRefGoogle Scholar
22Subrahmanyam, J., J. Am. Ceram. Soc. 76, C 226 (1993).Google Scholar
23Subrahmanyam, J. and Mohan Rao, R., J. Am. Ceram. Soc. (1994, in press).Google Scholar
24Subrahmanyam, J. and Mohan Rao, R., Mater. Sci. Eng. A183, 205 (1994).CrossRefGoogle Scholar
25Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3 (7,8), 277 (1989).CrossRefGoogle Scholar
26Maslov, V. M., Borovinskaya, I. P., and Merzhanov, A. G., Comb. Explos. Shock Wave USSR 12, 631 (1976).CrossRefGoogle Scholar
27Subrahmanyam, J., Vijayakumar, M., and Ranganath, S., Metals, Materials and Processes 1 (2), 105 (1989).Google Scholar
28Barin, J., Knacke, O., and Kubaschewski, O., Thermophysical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973), and Supplement (Springer-Verlag, Berlin, 1977).Google Scholar
29Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, 1989), pp. 187188.Google Scholar
30Handbook of High Temperature Compounds: Properties, Production and Applications, edited by Kosolapova, T. Ya. (Hemisphere Publ. Corp., New York, 1990), p. 167.Google Scholar
31Boldt, P. H., Embury, J. D., and Weatherly, G. C., Mater. Sci. Eng. A155, 251 (1992).CrossRefGoogle Scholar
32Gokhale, A. B. and Abbaschian, G. J., in Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986), p. 1631.Google Scholar
33Aikin, R. M., Scripta Metall. 26, 1025 (1992).CrossRefGoogle Scholar
34Handbook of Auger Electron Spectroscopy, edited by Davis, L. E., Macdonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E. (Physical Electronics Division of Perkin-Elmer Corp., Eden Prairie, MN, 1978), pp. 49, 53.Google Scholar
35Wade, R. K. and Petrovic, J. J., J. Am. Ceram. Soc. 75 (6), 1682 (1992).CrossRefGoogle Scholar
36Cherniack, G. B. and Grant Elliot, A., J. Am. Ceram. Soc. 47 (3), 136 (1964).CrossRefGoogle Scholar