Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:54:10.429Z Has data issue: false hasContentIssue false

Combinatorial metallurgical synthesis and processing of high-entropy alloys

Published online by Cambridge University Press:  17 July 2018

Zhiming Li*
Affiliation:
Max-Planck-Institut für Eisenforschung, Düsseldorf 40237, Germany
Alfred Ludwig
Affiliation:
Institute for Materials, Ruhr-Universität Bochum, Bochum 44780, Germany
Alan Savan
Affiliation:
Institute for Materials, Ruhr-Universität Bochum, Bochum 44780, Germany
Hauke Springer
Affiliation:
Max-Planck-Institut für Eisenforschung, Düsseldorf 40237, Germany
Dierk Raabe*
Affiliation:
Max-Planck-Institut für Eisenforschung, Düsseldorf 40237, Germany
*
a)Address all correspondence to these authors. e-mail: zhiming.li@mpie.de
b)e-mail: d.raabe@mpie.de
Get access

Abstract

High-entropy alloys (HEAs) with multiple principal elements open up a practically infinite space for designing novel materials. Probing this huge material universe requires the use of combinatorial and high-throughput synthesis and processing methods. Here, we present and discuss four different combinatorial experimental methods that have been used to accelerate the development of novel HEAs, namely, rapid alloy prototyping, diffusion-multiples, laser additive manufacturing, and combinatorial co-deposition of thin-film materials libraries. While the first three approaches are bulk methods which allow for downstream processing and microstructure adaptation, the latter technique is a thin-film method capable of efficiently synthesizing wider ranges of composition and using high-throughput measurement techniques to characterize their structure and properties. Additional coupling of these high-throughput experimental methodologies with theoretical guidance regarding specific target features such as phase (meta)stability allows for effective screening of novel HEAs with beneficial property profiles.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Li, R., Liaw, P., and Zhang, Y.: Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng., A 707, 668 (2017).CrossRefGoogle Scholar
Luo, H., Li, Z., Mingers, A.M., and Raabe, D.: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131 (2018).CrossRefGoogle Scholar
Luo, H., Li, Z., and Raabe, D.: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).CrossRefGoogle ScholarPubMed
Li, Z., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).CrossRefGoogle Scholar
Pradeep, K.G., Tasan, C.C., Yao, M.J., Deng, Y., Springer, H., and Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).CrossRefGoogle Scholar
Niendorf, T., Wegener, T., Li, Z., and Raabe, D.: Unexpected cyclic stress–strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scr. Mater. 143, 63 (2018).CrossRefGoogle Scholar
Nene, S.S., Liu, K., Frank, M., Mishra, R.S., Brennan, R.E., Cho, K.C., Li, Z., and Raabe, D.: Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).CrossRefGoogle Scholar
Luo, H., Li, Z., Lu, W., Ponge, D., and Raabe, D.: Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corros. Sci. 136, 403 (2018).CrossRefGoogle Scholar
Basu, S., Li, Z., Pradeep, K.G., and Raabe, D.: Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. 5, 30 (2018).CrossRefGoogle Scholar
Seol, J.B., Bae, J.W., Li, Z., Chan Han, J., Kim, J.G., Raabe, D., and Kim, H.S.: Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 151, 366 (2018).CrossRefGoogle Scholar
Springer, H. and Raabe, D.: Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
Springer, H., Belde, M., and Raabe, D.: Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Mater. Des. 90, 1100 (2016).CrossRefGoogle Scholar
Zhao, J-C., Zheng, X., and Cahill, D.G.: High-throughput diffusion multiples. Mater. Today 8, 28 (2005).CrossRefGoogle Scholar
Zhao, J-C.: Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51, 557 (2006).CrossRefGoogle Scholar
Wilson, P., Field, R., and Kaufman, M.: The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co–Cr–Fe–Mn–Ni high entropy alloy system. Intermetallics 75, 15 (2016).CrossRefGoogle Scholar
Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C.V., Yannetta, C.J., Chen, X., Ramanujan, R.V., Styles, M.J., Gibson, M.A., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).CrossRefGoogle Scholar
Ludwig, A., Zarnetta, R., Hamann, S., Savan, A., and Thienhaus, S.: Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99, 1144 (2008).CrossRefGoogle Scholar
Raabe, D., Tasan, C.C., Springer, H., and Bausch, M.: From high-entropy alloys to high-entropy steels. Steel Res. Int. 86, 1127 (2015).CrossRefGoogle Scholar
Li, Z. and Raabe, D.: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 210, 29 (2018).CrossRefGoogle Scholar
Li, Z., Tasan, C.C., Springer, H., Gault, B., and Raabe, D.: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).CrossRefGoogle ScholarPubMed
Wang, M., Li, Z., and Raabe, D.: In situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236 (2018).CrossRefGoogle Scholar
Li, Z. and Raabe, D.: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 69, 2099 (2017).CrossRefGoogle Scholar
Oh, H.S., Ma, D., Leyson, G.P., Grabowski, B., Park, E.S., Körmann, F., and Raabe, D.: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Friák, M., Hickel, T., Grabowski, B., Lymperakis, L., Udyansky, A., Dick, A., Ma, D., Roters, F., Zhu, L-F., and Schlieter, A.: Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. Eur. Phys. J. Plus 126, 101 (2011).CrossRefGoogle Scholar
Li, Z., Körmann, F., Grabowski, B., Neugebauer, J., and Raabe, D.: Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262 (2017).CrossRefGoogle Scholar
Zhao, J-C., Jackson, M.R., Peluso, L.A., and Brewer, L.N.: A diffusion multiple approach for the accelerated design of structural materials. MRS Bull. 27, 324 (2002).CrossRefGoogle Scholar
Zhao, J-C.: Reliability of the diffusion-multiple approach for phase diagram mapping. J. Mater. Sci. 39, 3913 (2004).CrossRefGoogle Scholar
Misell, D. and Stolinski, C.: Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Material Scientists and Geologists (Oxford, Pergamon, 1983).Google Scholar
Schwartz, A.J., Kumar, M., Adams, B.L., and Field, D.P.: Electron Backscatter Diffraction in Materials Science (Springer, New York, 2000).CrossRefGoogle Scholar
Dingley, D.: Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 213, 214 (2004).CrossRefGoogle ScholarPubMed
Williams, D.B. and Carter, C.B.: The Transmission Electron Microscope. Transmission Electron Microscopy (Springer, New York, 1996); p. 3.CrossRefGoogle Scholar
Fultz, B. and Howe, J.M.: Transmission Electron Microscopy and Diffractometry of Materials (Springer Science & Business Media, New York, 2012).Google Scholar
Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2011).CrossRefGoogle Scholar
Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Vlassak, J.J. and Nix, W.D.: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).CrossRefGoogle Scholar
Asif, S.A.S., Wahl, K.J., Colton, R.J., and Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).CrossRefGoogle Scholar
Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O., and Zhao, J-C.: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298 (2004).CrossRefGoogle ScholarPubMed
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Ocelík, V., Janssen, N., Smith, S.N., and De Hosson, J.T.M.: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).CrossRefGoogle Scholar
Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184 (2015).CrossRefGoogle Scholar
Haase, C., Tang, F., Wilms, M.B., Weisheit, A., and Hallstedt, B.: Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design. Mater. Sci. Eng., A 688, 180 (2017).CrossRefGoogle Scholar
Brif, Y., Thomas, M., and Todd, I.: The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93 (2015).CrossRefGoogle Scholar
Hofmann, D.C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R.P., Suh, J-O., Liu, Z-K., and Borgonia, J-P.: Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 29, 1899 (2014).CrossRefGoogle Scholar
Rombouts, M., Kruth, J-P., Froyen, L., and Mercelis, P.: Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann.–Manuf. Technol. 55, 187 (2006).CrossRefGoogle Scholar
Knoll, H., Ocylok, S., Weisheit, A., Springer, H., Jägle, E., and Raabe, D.: Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88, 1600416 (2017).CrossRefGoogle Scholar
Welk, B.A., Gibson, M.A., and Fraser, H.L.: A combinatorial approach to the investigation of metal systems that form both bulk metallic glasses and high entropy alloys. JOM 68, 1021 (2016).CrossRefGoogle Scholar
Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., and Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).CrossRefGoogle ScholarPubMed
Stein, H., Naujoks, D., Grochla, D., Khare, C., Gutkowski, R., Grützke, S., Schuhmann, W., and Ludwig, A.: A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films. Phys. Status Solidi A 212, 2798 (2015).CrossRefGoogle Scholar
Yan, X.H., Li, J.S., Zhang, W.R., and Zhang, Y.: A brief review of high-entropy films. Mater. Chem. Phys. 210, 12 (2018).CrossRefGoogle Scholar
Li, Y., Jensen, K.E., Liu, Y., Liu, J., Gong, P., Scanley, B.E., Broadbridge, C.C., and Schroers, J.: Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb. Sci. 18, 630 (2016).CrossRefGoogle ScholarPubMed
Chevrier, V. and Dahn, J.: Production and visualization of quaternary combinatorial thin films. Meas. Sci. Technol. 17, 1399 (2006).CrossRefGoogle Scholar
Kauffmann, A., Stüber, M., Leiste, H., Ulrich, S., Schlabach, S., Szabó, D.V., Seils, S., Gorr, B., Chen, H., and Seifert, H-J.: Combinatorial exploration of the high entropy alloy system Co–Cr–Fe–Mn–Ni. Surf. Coat. Technol. 325, 174 (2017).CrossRefGoogle Scholar
Brundle, C., Conti, G., and Mack, P.: XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. J. Electron Spectrosc. Relat. Phenom. 178, 433 (2010).CrossRefGoogle Scholar
Stein, H.S., Gutkowski, R., Siegel, A., Schuhmann, W., and Ludwig, A.: New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. J. Mater. Chem. A 4, 3148 (2016).CrossRefGoogle Scholar
Warren, O.L. and Wyrobek, T.J.: Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas. Sci. Technol. 16, 100 (2004).CrossRefGoogle Scholar
Fackler, S.W., Alexandrakis, V., König, D., Kusne, A.G., Gao, T., Kramer, M.J., Stasak, D., Lopez, K., Zayac, B., and Mehta, A.: Combinatorial study of Fe–Co–V hard magnetic thin films. Sci. Technol. Adv. Mater. 18, 231 (2017).CrossRefGoogle ScholarPubMed
Thienhaus, S., Naujoks, D., Pfetzing-Micklich, J., Konig, D., and Ludwig, A.: Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni–Al. ACS Comb. Sci. 16, 686 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Savan, A., Kostka, A., Stein, H., and Ludwig, A.: Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater. Horiz. 5, 86 (2018).CrossRefGoogle Scholar
Saal, J.E., Berglund, I.S., Sebastian, J.T., Liaw, P.K., and Olson, G.B.: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling. Scr. Mater. 146, 5 (2018).CrossRefGoogle Scholar
Lederer, Y., Toher, C., Vecchio, K.S., and Curtarolo, S.: The search for high entropy alloys: A high-throughput ab initio approach. arXiv preprint arXiv:1711.03426 (2017).Google Scholar
Gurao, N. and Biswas, K.: In the quest of single phase multi-component multiprincipal high entropy alloys. J. Alloys Compd. 697, 434 (2017).Google Scholar