Skip to main content Accessibility help

Combinatorial metallurgical synthesis and processing of high-entropy alloys

  • Zhiming Li (a1), Alfred Ludwig (a2), Alan Savan (a2), Hauke Springer (a1) and Dierk Raabe (a1)...


High-entropy alloys (HEAs) with multiple principal elements open up a practically infinite space for designing novel materials. Probing this huge material universe requires the use of combinatorial and high-throughput synthesis and processing methods. Here, we present and discuss four different combinatorial experimental methods that have been used to accelerate the development of novel HEAs, namely, rapid alloy prototyping, diffusion-multiples, laser additive manufacturing, and combinatorial co-deposition of thin-film materials libraries. While the first three approaches are bulk methods which allow for downstream processing and microstructure adaptation, the latter technique is a thin-film method capable of efficiently synthesizing wider ranges of composition and using high-throughput measurement techniques to characterize their structure and properties. Additional coupling of these high-throughput experimental methodologies with theoretical guidance regarding specific target features such as phase (meta)stability allows for effective screening of novel HEAs with beneficial property profiles.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
3.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
4.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
5.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
6.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
7.Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).
8.Li, R., Liaw, P., and Zhang, Y.: Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng., A 707, 668 (2017).
9.Luo, H., Li, Z., Mingers, A.M., and Raabe, D.: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131 (2018).
10.Luo, H., Li, Z., and Raabe, D.: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).
11.Li, Z., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).
12.Pradeep, K.G., Tasan, C.C., Yao, M.J., Deng, Y., Springer, H., and Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).
13.Niendorf, T., Wegener, T., Li, Z., and Raabe, D.: Unexpected cyclic stress–strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scr. Mater. 143, 63 (2018).
14.Nene, S.S., Liu, K., Frank, M., Mishra, R.S., Brennan, R.E., Cho, K.C., Li, Z., and Raabe, D.: Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).
15.Luo, H., Li, Z., Lu, W., Ponge, D., and Raabe, D.: Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corros. Sci. 136, 403 (2018).
16.Basu, S., Li, Z., Pradeep, K.G., and Raabe, D.: Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. 5, 30 (2018).
17.Seol, J.B., Bae, J.W., Li, Z., Chan Han, J., Kim, J.G., Raabe, D., and Kim, H.S.: Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 151, 366 (2018).
18.Springer, H. and Raabe, D.: Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 60, 4950 (2012).
19.Springer, H., Belde, M., and Raabe, D.: Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Mater. Des. 90, 1100 (2016).
20.Zhao, J-C., Zheng, X., and Cahill, D.G.: High-throughput diffusion multiples. Mater. Today 8, 28 (2005).
21.Zhao, J-C.: Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51, 557 (2006).
22.Wilson, P., Field, R., and Kaufman, M.: The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co–Cr–Fe–Mn–Ni high entropy alloy system. Intermetallics 75, 15 (2016).
23.Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C.V., Yannetta, C.J., Chen, X., Ramanujan, R.V., Styles, M.J., Gibson, M.A., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).
24.Ludwig, A., Zarnetta, R., Hamann, S., Savan, A., and Thienhaus, S.: Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99, 1144 (2008).
25.Raabe, D., Tasan, C.C., Springer, H., and Bausch, M.: From high-entropy alloys to high-entropy steels. Steel Res. Int. 86, 1127 (2015).
26.Li, Z. and Raabe, D.: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 210, 29 (2018).
27.Li, Z., Tasan, C.C., Springer, H., Gault, B., and Raabe, D.: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).
28.Wang, M., Li, Z., and Raabe, D.: In situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236 (2018).
29.Li, Z. and Raabe, D.: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 69, 2099 (2017).
30.Oh, H.S., Ma, D., Leyson, G.P., Grabowski, B., Park, E.S., Körmann, F., and Raabe, D.: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).
31.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
32.Friák, M., Hickel, T., Grabowski, B., Lymperakis, L., Udyansky, A., Dick, A., Ma, D., Roters, F., Zhu, L-F., and Schlieter, A.: Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. Eur. Phys. J. Plus 126, 101 (2011).
33.Li, Z., Körmann, F., Grabowski, B., Neugebauer, J., and Raabe, D.: Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262 (2017).
34.Zhao, J-C., Jackson, M.R., Peluso, L.A., and Brewer, L.N.: A diffusion multiple approach for the accelerated design of structural materials. MRS Bull. 27, 324 (2002).
35.Zhao, J-C.: Reliability of the diffusion-multiple approach for phase diagram mapping. J. Mater. Sci. 39, 3913 (2004).
36.Misell, D. and Stolinski, C.: Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Material Scientists and Geologists (Oxford, Pergamon, 1983).
37.Schwartz, A.J., Kumar, M., Adams, B.L., and Field, D.P.: Electron Backscatter Diffraction in Materials Science (Springer, New York, 2000).
38.Dingley, D.: Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 213, 214 (2004).
39.Williams, D.B. and Carter, C.B.: The Transmission Electron Microscope. Transmission Electron Microscopy (Springer, New York, 1996); p. 3.
40.Fultz, B. and Howe, J.M.: Transmission Electron Microscopy and Diffractometry of Materials (Springer Science & Business Media, New York, 2012).
41.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2011).
42.Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).
43.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
44.Vlassak, J.J. and Nix, W.D.: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).
45.Asif, S.A.S., Wahl, K.J., Colton, R.J., and Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).
46.Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O., and Zhao, J-C.: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298 (2004).
47.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
48.Ocelík, V., Janssen, N., Smith, S.N., and De Hosson, J.T.M.: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).
49.Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184 (2015).
50.Haase, C., Tang, F., Wilms, M.B., Weisheit, A., and Hallstedt, B.: Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design. Mater. Sci. Eng., A 688, 180 (2017).
51.Brif, Y., Thomas, M., and Todd, I.: The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93 (2015).
52.Hofmann, D.C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R.P., Suh, J-O., Liu, Z-K., and Borgonia, J-P.: Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 29, 1899 (2014).
53.Rombouts, M., Kruth, J-P., Froyen, L., and Mercelis, P.: Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann.–Manuf. Technol. 55, 187 (2006).
54.Knoll, H., Ocylok, S., Weisheit, A., Springer, H., Jägle, E., and Raabe, D.: Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88, 1600416 (2017).
55.Welk, B.A., Gibson, M.A., and Fraser, H.L.: A combinatorial approach to the investigation of metal systems that form both bulk metallic glasses and high entropy alloys. JOM 68, 1021 (2016).
56.Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., and Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).
57.Stein, H., Naujoks, D., Grochla, D., Khare, C., Gutkowski, R., Grützke, S., Schuhmann, W., and Ludwig, A.: A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films. Phys. Status Solidi A 212, 2798 (2015).
58.Yan, X.H., Li, J.S., Zhang, W.R., and Zhang, Y.: A brief review of high-entropy films. Mater. Chem. Phys. 210, 12 (2018).
59.Li, Y., Jensen, K.E., Liu, Y., Liu, J., Gong, P., Scanley, B.E., Broadbridge, C.C., and Schroers, J.: Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb. Sci. 18, 630 (2016).
60.Chevrier, V. and Dahn, J.: Production and visualization of quaternary combinatorial thin films. Meas. Sci. Technol. 17, 1399 (2006).
61.Kauffmann, A., Stüber, M., Leiste, H., Ulrich, S., Schlabach, S., Szabó, D.V., Seils, S., Gorr, B., Chen, H., and Seifert, H-J.: Combinatorial exploration of the high entropy alloy system Co–Cr–Fe–Mn–Ni. Surf. Coat. Technol. 325, 174 (2017).
62.Brundle, C., Conti, G., and Mack, P.: XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. J. Electron Spectrosc. Relat. Phenom. 178, 433 (2010).
63.Stein, H.S., Gutkowski, R., Siegel, A., Schuhmann, W., and Ludwig, A.: New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. J. Mater. Chem. A 4, 3148 (2016).
64.Warren, O.L. and Wyrobek, T.J.: Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas. Sci. Technol. 16, 100 (2004).
65.Fackler, S.W., Alexandrakis, V., König, D., Kusne, A.G., Gao, T., Kramer, M.J., Stasak, D., Lopez, K., Zayac, B., and Mehta, A.: Combinatorial study of Fe–Co–V hard magnetic thin films. Sci. Technol. Adv. Mater. 18, 231 (2017).
66.Thienhaus, S., Naujoks, D., Pfetzing-Micklich, J., Konig, D., and Ludwig, A.: Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni–Al. ACS Comb. Sci. 16, 686 (2014).
67.Li, Y., Savan, A., Kostka, A., Stein, H., and Ludwig, A.: Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater. Horiz. 5, 86 (2018).
68.Saal, J.E., Berglund, I.S., Sebastian, J.T., Liaw, P.K., and Olson, G.B.: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling. Scr. Mater. 146, 5 (2018).
69.Lederer, Y., Toher, C., Vecchio, K.S., and Curtarolo, S.: The search for high entropy alloys: A high-throughput ab initio approach. arXiv preprint arXiv:1711.03426 (2017).
70.Gurao, N. and Biswas, K.: In the quest of single phase multi-component multiprincipal high entropy alloys. J. Alloys Compd. 697, 434 (2017).


Related content

Powered by UNSILO

Combinatorial metallurgical synthesis and processing of high-entropy alloys

  • Zhiming Li (a1), Alfred Ludwig (a2), Alan Savan (a2), Hauke Springer (a1) and Dierk Raabe (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.