Skip to main content Accessibility help
×
Home

A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior

  • Owais Ahmed Waseem (a1), Ulanbek Auyeskhan (a1), Hyuck Mo Lee (a2) and Ho Jin Ryu (a1)

Abstract

To overcome the limited feasibility of various refractory high-entropy alloys (HEAs) due to the presence of (i) very dense elements (W and Ta), (ii) costly elements (Hf and Ta), and (iii) oxidation prone elements (V) in them, AlxCryMozNbTiZr HEAs were prepared via arc-melting. Considering the critical nature of oxidation resistance in high-temperature applications, HEAs were characterized to form a combinatorial library of microstructural and oxidation behavior. AlxCryMozNbTiZr HEAs revealed multiphase microstructures consisting of intermetallic phases along with BCC matrices. Mass loss and porous microstructures were obtained in Mo-rich HEAs after oxidation at 1000 °C for 1 h. The presence of Al enhanced the oxidation resistance and developed a protective oxide layer on the HEAs. Al30Cr10-NTZ exhibited promising potential for use in high temperature applications, as it showed an oxidation time exponent of ∼0.5 and a dense and continuous oxide layer.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hojinryu@kaist.ac.kr

Footnotes

Hide All
b)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).
2.Yurchenko, N.Y., Stepanov, N.D., Shaysultanov, D.G., Tikhonovsky, M.A., and Salishche, G.A.: Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 121, 125 (2016).
3.Yurchenko, N., Stepanov, N., Tikhonovsky, M., and Salishchev, G.: Phase evolution of the AlxNbTiVZr (x = 0; 0.5; 1; 1.5) high entropy alloys. Metals 6, 298 (2016).
4.Yurchenko, N.Y., Stepanov, N.D., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng., A 704, 82 (2017).
5.Stepanov, N.D., Yurchenko, N.Y., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2017).
6.Gao, M.C., Zhang, B., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).
7.Stepanov, N.D., Yurchenko, N.Y., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31, 1184 (2015).
8.Yang, X., Zhang, Y., and Liaw, P.K.: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng. 36, 292 (2012).
9.Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).
10.Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).
11.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
12.Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Effect of composing element on microstructure and mechanical properties in Mo–Nb–Hf–Zr–Ti multi-principle component alloys. Intermetallics 69, 13 (2016).
13.Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).
14.Gasik, M. and Yu, H.: Phase equilibria and thermal behaviour of biomedical Ti–Nb–Zr alloy. Plansee Semin. 1, 1 (2009).
15.Wu, Y.D., Cai, Y.H., Chen, X.H., Wang, T., Si, J.J., Wang, L., Wang, Y.D., and Hui, X.D.: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).
16.Juan, C.C., Tseng, K.K., Hsu, W.L., Tsai, M.H., Tsai, C.W., Lin, C.M., Chen, S.K., Lin, S.J., and Yeh, J.W.: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 175, 284 (2016).
17.Morinaga, M., Nambu, T., Fukumori, J., Kato, M., Sakaki, T., Matsumoto, Y., Torisaka, Y., and Horihata, M.: Effect of surface imperfections on the ductility of pure chromium. J. Mater. Sci. 30, 1105 (1995).
18.Zhang, Y., Liu, Y., Li, Y., Chen, X., and Zhang, H.: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).
19.Stepanov, N.D., Yurchenko, N.Y., Sokolovsky, V.S., Tikhonovsky, M.A., and Salishchev, G.A.: An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 161, 136 (2015).
20.Butler, T.M., Chaput, K.J., Dietrich, J.R., and Senkov, O.N.: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd. 729, 1004 (2017).
21.Senkov, O.N., Senkova, S.V., Dimiduk, D.M., Woodward, C., and Miracle, D.B.: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J. Mater. Sci. 47, 6522 (2012).
22.Chang, C.H., Titus, M.S., and Yeh, J.W.: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv. Eng. Mater. 20, 1700948 (2018).
23.Gao, M.C.: Progress in high entropy alloys. JOM 67, 2251 (2015).
24.Huang, C., Zhang, Y., Shen, J., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).
25.Yurchenko, N., Stepanov, N., and Salishchev, G.: Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 33, 17 (2017).
26.Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B.: Low-density refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).
27.Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).
28.Duan, Y.H., Huang, B., Sun, Y., Peng, M.J., and Zhou, S.G.: Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd. 590, 50 (2014).
29.Raghavan, V.: Al–Fe–Zr (aluminum–iron–zirconium). J. Phase Equilib. Diffus. 27, 284 (2006).
30.Kellou, A., Grosdidier, T., Coddet, C., and Aourag, H.: Theoretical study of structural, electronic, and thermal properties of Cr2(Zr,Nb) Laves alloys. Acta Mater. 53, 1 (2005).
31.Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Christ, H-J., and Heilmaier, M.: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd. 661, 206 (2016).
32.Morinaga, M., Yukawa, N., Adachi, H., and Ezaki, H.: New phacomp and its applications to alloy design. Superalloys 1, 523 (1984).
33.Lu, Y., Dong, Y., Jiang, L., Wang, T., Li, T., and Zhang, Y.: A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17, 2355 (2015).
34.Waseem, O.A., Lee, J., Lee, H.M., and Ryu, H.J.: The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater. Chem. Phys. 210, 87 (2018).
35.Müller, F., Gorr, B., Christ, H-J., Chen, H., Kauffmann, A., and Heilmaier, M.: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater. High Temp. 3409, 1 (2017).
36.Gorr, B., Mueller, F., Christ, H-J., Mueller, T., Chen, H., Kauffmann, A., and Heilmaier, M.: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb20Mo20Cr20Ti20Al with and wit hout Si addition. J. Alloys Compd. 688, 468 (2016).
37.Kai, W., Li, C.C., Cheng, F.P., Chu, K.P., Huang, R.T., Tsay, L.W., and Kai, J.J.: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygen-containing atmospheres. Corros. Sci. 108, 209 (2015).
38.Coats, A.W. and Redfern, J.P.: Thermogravimetric analysis. A review. Analyst 88, 906 (1963).
39.Karahan, T., Ouyang, G., Ray, P.K., Kramer, M.J., and Akinc, M.: Oxidation mechanism of W substituted Mo–Si–B alloys. Intermetallics 87, 38 (2017).
40.Meyer, M.K., Thom, A.J., and Akinc, M.: Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000 °C. Intermetallics 7, 153 (1999).
41.Kamruddin, M., Ajikumar, P.K., Dash, S., Tyagi, A.K., and Raj, B.: Thermogravimetry-evolved gas analysis-mass spectrometry system for materials research. Bull. Mater. Sci. 26, 449 (2003).
42.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
43.Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).
44.Dirras, G., Gubicza, J., Heczel, A., Lilensten, L., Couzinié, J-P., Perrière, L., Guillot, I., and Hocini, A.: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).
45.Stepanov, N.D., Yurchenko, N.Y., Panina, E.S., Tikhonovsky, M.A., and Zherebtsov, S.V.: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162 (2017).
46.Fazakas, É., Zadorozhnyy, V., Varga, L.K., Inoue, A., Louzguine-Luzgin, D.V., Tian, F., and Vitos, L.: Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 47, 131 (2014).
47.Murayama, Y. and Hanada, S.: High temperature strength, fracture toughness and oxidation resistance of Nb–Si–Al–Ti multiphase alloys. Sci. Technol. Adv. Mater. 3, 145 (2002).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed