Skip to main content Accessibility help

CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements

  • Gang Qin (a1), Zibo Li (a1), Ruirun Chen (a2), Huiting Zheng (a1), Chenlei Fan (a1), Liang Wang (a1), Yanqing Su (a1), Hongsheng Ding (a1), Jingjie Guo (a1) and Hengzhi Fu (a1)...


Laves phase plays a positive role in improving the strength of high-entropy alloys (HEAs); Nb and Ti elements have potential to promote Laves phase formation in some HEAs. For improving the strength of the face-centered cubic (FCC) CoCrFeMnNi HEA, a series of (CoCrFeMnNi)100−xNbx (atomic ratio: x = 0, 4, 8, 12, 16) and (CoCrFeMnNi)100−xTix (atomic ratio: x = 0, 2, 4, 6, 8, 12) HEAs were prepared by melting. The effects of Nb and Ti on the microstructure evolution and compressive properties of the CoCrFeMnNi HEAs were investigated. For (CoCrFeMnNi)100−xNbx HEAs, the second-phase (Laves and σ phase) volume fraction increased from 0 to 42%. The yield strength also increased gradually from 202 to 1010 MPa. However, the fracture strain decreased from 60% (no fracture) to 12% with increasing Nb content. For (CoCrFeMnNi)100−xTix HEAs, the yield strength increased from 202 to 1322 MPa. The Laves phase volume fraction also increased from 0 to 27%. However, the fracture strain decreased from 60% (no fracture) to 7.5% with increasing Ti content. Addition of Nb and Ti has a good effect on improving the strength of FCC CoCrFeMnNi HEA.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Sun, S.J., Tian, Y.Z., Lin, H.R., Dong, X.G., Wang, Y.H., Zhang, Z.J., and Zhang, Z.F.: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122 (2017).
2.Sun, S.J., Tian, Y.Z., Lin, H.R., Yang, H.J., Dong, X.G., Wang, Y.H., and Zhang, Z.F.: Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng., A 712, 603 (2018).
3.Ma, Y., Wang, Q., Li, C., Santodonato, L., Feygenson, M., Dong, C., and Liaw, P.K.: Chemical short-range orders and the induced structural transition in high-entropy alloys. Scr. Mater. 64, 144 (2018).
4.Wu, W.Q., Ni, S., Liu, Y., and Song, M.: Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. J. Mater. Res. 31, 3815 (2016).
5.Zhang, Y., Liu, Y., and Li, T.X.: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).
6.Liu, Y., Zhang, Y., Zhang, H., Wang, N.J., Chen, X., Zhang, H.W., and Li, Y.X.: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloys Compd. 694, 869 (2017).
7.Liu, Y., Chen, M., Li, Y.X., and Chen, X.: Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare Met. Mater. Eng. 38, 602 (2009).
8.Liu, X.W., Liu, L., Liu, G., Wu, X.X., Lu, D.H., Yao, J.Q., Jiang, W.M., Fan, Z.T., and Zhang, W.B.: The role of carbon in grain refinement of cast CrFeCoNi high-entropy alloys. Metall. Mater. Trans. A 49, 2151 (2018).
9.Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
10.Lu, Y.P., Gao, X.Z., Jiang, L., Chen, Z.N., Wang, T.M., Jie, J.C., Kang, H.J., Zhang, Y.B., Guo, S., Ruan, H.H., Zhao, Y.H., Cao, Z.Q., and Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).
11.Yao, J.Q., Liu, X.W., Gao, N., Jiang, Q.H., Li, N., Liu, G., Zhang, W.B., and Fan, Z.T.: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics 98, 79 (2018).
12.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
13.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 213, 375 (2004).
14.He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).
15.Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Oleynik, E.E., Tortika, A.S., and Senkov, O.N.: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 628, 170 (2015).
16.Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).
17.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix, alloys. Intermetallics 15, 357 (2007).
18.Huo, W.Y., Zhou, H., Fang, F., Xie, Z.H., and Jiang, J.Q.: Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater. Des. 134, 226 (2017).
19.Huo, W.Y., Zhou, H., Fang, F., Zhou, X.F., Xie, Z.H., and Jiang, J.Q.: Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J. Alloys Compd. 735, 897 (2018).
20.Shun, T.T., Chang, L.Y., and Shiu, M.H.: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).
21.Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).
22.Jiang, H., Jiang, L., Qiao, D.X., Lu, Y.P., Wang, T.M., Cao, Z.Q., and Li, T.J.: Effect of niobium addition on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2016).
23.He, F., Wang, Z., Cheng, P., Wang, Q., Li, J.J., Dang, Y.Y., Wang, J.C., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).
24.Dong, Y., Zhou, K.Y., Lu, Y.P., Gao, X.X., Wang, T.M., and Li, T.J.: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67 (2015).
25.Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).
26.Chen, Q.S., Lu, Y.P., Dong, Y., Wang, T.M., and Li, T.J.: Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-component alloy. Trans. Nonferrous Met. Soc. China 25, 2958 (2015).
27.Zhu, J.M., Zhang, H.F., Fu, H.M., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloys Compd. 497, 52 (2010).
28.Zhu, J.M., Fu, H.M., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q.: Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng., A 527, 7210 (2010).
29.Yu, Y., Wang, J., Li, J.S., Kou, H.C., and Liu, W.M.: Characterization of BCC phases in AlCoCrFeNiTix high entropy alloys. Mater. Lett. 138, 78 (2015).
30.Chen, J., Niu, P., Liu, Y., Lu, Y.Y., Wang, X.H., Peng, Y.L., and Liu, J.N.: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94, 39 (2016).
31.Li, Z.M., Pradeep, K.G., and Deng, Y.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
32.Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).
33.Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).
34.Otto, F., Hanold, N.L., and George, E.P.: Microstructural evolution after thermo mechanical processing in an equiatomic, single-phase CoCrFeMnNi high entropy alloy with special focus on twin boundaries. Intermetallics 54, 39 (2014).
35.Chen, X., Sui, Y.W., Qi, J.Q., He, Y.Z., Wei, F.X., Meng, Q.K., and Sun, Z.: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 11, 32 (2017).
36.Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 253 (2007).
37.Tsai, S.W.: Theory of Composites Design (Think Composites Press, San Francisco, 1992).
38.Zhang, Y., Zhou, Y., Lin, J.,  Chen, G., and   Liaw, P.K.: Solid‐solution phase formation rules for multi‐component alloys. Adv. Eng. Mater. 10, 534 (2008).
39.Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).
40.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
41.Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).
42.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 645 (2011).
43.Tsai, M.H., Tsai, K.Y., Tsai, C.W., Lee, C., Juan, C.C., and Ye, J.W.: Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).
44.Tsai, M.H., Chang, K.C., Li, J.H., Tsai, R.C., and Cheng, A.H.: A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4, 1 (2016).
45.Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 1 (2015).
46.Yurchenko, N., Stepanov, N., and Salishchev, G.: Laves-phase formation criterion for high-entropy alloys. Met. Sci. J. 33, 17 (2016).
47.Senkov, O.N. and Miracle, D.B.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).
48.Murty, B.S., Yeh, J.W., and Ranganathan, S.: High Entropy Alloys (Elsevier, London, 2014).
49.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2011).
50.Guo, S., Hu, Q., Ng, C., and Liu, C.T.: More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).
51.Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high entropy alloys. JOM 64, 830 (2012).
52.Chen, R.R., Qin, G., Zheng, H.T., Wang, L., Su, Y.Q., Chiu, Y.L., Ding, H.S., Guo, J.J., and Fu, H.Z.: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144, 129 (2018).
53.Qin, G., Xue, W.T., Fan, C.L., Chen, R.R., Wang, L., Su, Y.Q., Ding, H.S., and Guo, J.J.: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200 (2018).
54.Qin, G., Wang, S., Chen, R.R., Gong, X., Wang, L., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol. 34, 365 (2018).
55.Feng, R., Gao, M.C., Lee, C., Mathes, M., Zuo, T.T., Chen, S.Y., Hawk, J.A., Zhang, Y., and Liaw, P.K.: Design of light-weight high-entropy alloys. Entropy 18, 333 (2016).
56.Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 42, 57 (2014).
57.Chanda, B. and Das, J.: Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) high entropy alloys. Adv. Eng. Mater. 20, 1700908 (2018).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed