Skip to main content Accessibility help
×
Home

Chemisorptive electron emission and atomic force microscopy as probes of plastic deformation during fracture at a metal/glass interface

  • Sumio Nakahara (a1), S.C. Langford (a1) and J.T. Dickinson (a1)

Abstract

We examine the use of chemisorptive emission (electron emission accompanying the adsorption of a reactive gas on a metal surface) and atomic force microscopy as measures of plastic deformation during fracture along a metallic Mg/glass interface. Localized ductile deformation in the metallic phase enhances the fracture energy, exposes metallic Mg to the reactive O2 atmosphere, and produces intense emissions. The number of electrons emitted following fracture in low-pressure oxygen atmospheres is strongly correlated with the total energy expended during failure (peel energy). The presence of localized ductile deformation is verified by atomic force microscopy (AFM): voids are observed on surfaces yielding significant cmissions and enhanced fracture energies. These voids are not observed on samples yielding the lowest peel energies and emission intensities, i.e., where the contribution of deformation to the peel energy is negligible. Quantitative use of roughness data derived from the AFM images is, however, problematic. The potential for chemisorptive electron emission as a probe of deformation along interfaces involving Mg, Ti, Zr, and Al is promising.

Copyright

Corresponding author

a)Permanent address: Department of Mechanical Engineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 564, Japan.

References

Hide All
1Evans, A. G. and Hutchinson, J. W., Acta Metall. 37, 909 (1989).
2Chen, Z. and Mecholsky, J. J. Jr., J. Mater. Res. 8, 2362 (1993).
3Evans, A. G. and Dalgleish, B. J., Mater. Sci. Eng. A162, 1 (1993).
4Kim, J., Kim, K. S., and Kim, Y. H., J. Adhesion Sci. Technol. 3, 174 (1989).
5Evans, A. G., Dalgleish, B. J., He, M., and Hutchinson, J. W., Acta Metall. 37, 3249 (1989).
6Reimanis, I. E., Dalgleish, B. J., and Evans, A. G., Acta Metall. Mater. 39, 3133 (1991).
7Dickinson, J. T., Jensen, L. C., Langford, S. C., and Hoagland, R. G., J. Mater. Res. 9, 1156 (1994).
8Sujak, B. and Gieroszyński, A., Acta Phys. Polon. 28, (1968).
9Baxter, W. J., Fatigue Eng. Mater. Struc. 1, 343 (1979).
10Hagena, O. F., Knop, G., Fromknecht, R., and Linker, G., J. Vac. Sci. Technol. A 12, 282 (1994).
11Watanabe, Y., Nakamura, Y., Dickinson, J. T., and Langford, S. C., J. Non-Cryst. Solids 177, 9 (1994).
12K'Singam, L. A., Dickinson, J. T., and Jensen, L. C., J. Am. Ceram. Soc. 68, 510 (1985).
13Doering, D. L., Langford, S. C., Dickinson, J. T., and Xiong-Skiba, P., J. Vac. Sci. Technol. A 8, 2401 (1990).
14Mecholsky, J. J. Jr., Freimam, S. W., and Rice, R. W., J. Mater. Sci. 11, 1310 (1976).
15Hertzberg, Richard W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley, New York, 1989), pp. 8183.
16Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40, S295 (1992).
17McCarroll, B.M., J. Chem. Phys. 50, 4758 (1969).
18Kasemo, B., Törnqvist, E., and Wallden, L., Mater. Sci. Eng. 42, 23 (1980).
19Prince, R. H. and Persaud, R., Surf. Sci. 207, (1988).
20Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).
21Loudiana, M. A., Bye, J., Dickinson, J. T., and Dickinson, D. A., Surf. Sci. 157, 459 (1985).
22Krylova, I. V., Poverkhnost Fiz. Khim. Mekhan. 1, 5 (1988).
23Nørskov, J.K., Newns, D. M., and Lindqvist, B. I., Surf. Sci. 80, 179 (1979).
24Kasemo, B., Törnqvist, E., Nørskov, J. K., and Lindqvist, B. I., Surf. Sci. 89, 554 (1979).
25Prince, R. H., Lambert, R. M., and Foord, J. S., Surf. Sci. 107, 605 (1981).
26Cox, M. P., Foord, J. S., Lambert, R. M., and Prince, R. H., Surf. Sci. 129, 399 (1983).
27Deblasi Bourdon, E.B. and Prince, R. H., Surf. Sci. 144, 591 (1984).
28Namba, H., Darville, J., and Gilles, J. M., Surf. Sci. 108, 446 (1981).
29Allen, G. C., Tucker, P. M., Hayden, B. E., and Klemperer, D. F., Surf. Sci. 102, 207 (1981).
30Gessell, T. F. and Arakawa, E. T., Surf. Sci. 33, 419 (1972).
31Embury, J. D. and Hirth, J. P., “on dislocation storage and the mechanical response of fine scale microstructures,” pre-publication.
32Mandelbrot, B. B., Passoja, D. E., and Paullay, A.J., Nature 308, 721 (1984).
33Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S., J. Am.Ceram. Soc. 72, 60 (1989).
34Underwood, E. E. and Banerji, K., Mater. Sci. Eng. 80, 1 (1986).
35Chermant, J. L. and Coster, M., J. Mater. Sci. 14, 509 (1979).
36Sayles, R. S., in Rough Surfaces, edited by Thomas, T. R. (Longman, London, 1982), p. 92.
37Warner, C. P. and Bonnell, D. A., in Interface Dynamics and Growth, edited by Liang, K.S., Anderson, M. P., Bruinsma, R. F., and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 393.

Chemisorptive electron emission and atomic force microscopy as probes of plastic deformation during fracture at a metal/glass interface

  • Sumio Nakahara (a1), S.C. Langford (a1) and J.T. Dickinson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed