Skip to main content Accessibility help
×
Home

Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications

  • Filippos Papadatos (a1), Steve Consiglio (a1), Spyridon Skordas (a1), Eric T. Eisenbraun (a1), Alain E. Kaloyeros (a1), John Peck (a2), David Thompson (a2) and Cynthia Hoover (a2)...

Abstract

A low-temperature (320–480 °C) metal-organic chemical vapor deposition (MOCVD) process was developed for the growth of ruthenium and ruthenium oxide thin films. The process used bis(ethylcyclopentadienyl)ruthenium [Ru(C5H4C2H5)2] and oxygen as, respectively, the ruthenium and oxygen sources. Systematic investigations of film formation mechanisms and associated rate limiting factors that control the nucleation and growth of the Ru and RuO2 phases led to the demonstration that the MOCVD process can be smoothly and reversibly modified to form either Ru or RuO2 through simple and straightforward modifications to the processing conditions–primarily oxygen flow and substrate temperature. In particular, films grown at low oxygen flows (50 sccm) exhibited a metallic Ru phase at processing temperatures below 480 °C. In contrast, films grown at high oxygen flow (300 sccm) were metallic Ru below 400 °C. Above 400 °C, a phase transition was observed from Ru to RuOx (0 < x < 2.0) to RuO2 as the processing temperature was gradually increased to 480 °C.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: akaloyeros@uamail.albany.edu

References

Hide All
1Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J. and Brasen, D.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc., 132, 2677 (1985).
2Kolawa, E., So, F.C.T., Pan, T-S. and Nicolet, M-A.: Reactively sputtered RuO2 diffusion barriers. Appl. Phys. Lett. 50, 854 (1987).
3Krusin-Elbaum, L., Wittmer, M. and Yee, D.S.: Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization. Appl. Phys. Lett. 50, 1879 (1987).
4Si, J. and Desu, S.B.: RuO2 films by metal-organic chemical vapor deposition. J. Mater. Res. 8, 2644 (1993).
5Zhong, H., Heuss, G. and Misra, V.: Electrical properties of RuO2 gate electrodes for dual metal gate Si-CMOS. IEEE Electr. Dev. Lett . 21, 593 (2000).
6Zhong, H., Heuss, G., Misra, V., Luan, H., Lee, C-H. and Kwong, D-L.: Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics. Appl. Phys. Lett. 78, 1134 (2001).
7Zhong, H., Heuss, G., Suh, Y-S., Hong, S-N., Misra, V., Kelly, J. and Parsons, G. in Gate Stack and Silicide Issues in Silicon Processing II, edited by Campbell, S.A., Clevenger, L.A., Griffin, P.B., and Hobbs, C.C., (Mater. Res. Soc. Symp. Proc. 670, Warrendale, PA, 2002), p. K3.1.1.
8Wilk, D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and material properties considerations. J. Appl. Phys. 89, 5243 (2001).
9Meng, L-J. and Santos, M.P. dos: Characterization of RuO2 films prepared by rf reactive magnetron sputtering. Appl. Surf. Sci. 147, 94 (1999).
10Hergenrother, J.M., Wilk, G.D., Nigam, T., Klemens, F.P., Monroe, D., Silverman, P.J., Sorsch, T.W., Busch, B., Green, M.L., Baker, M.R., Boone, T., Bude, M.K., Ciampa, N.A., Ferry, E.J., Fiory, A.T., Hillenius, S.J., Jacobson, D.C., Johnson, R.W., Kalavade, P., Keller, R.C., King, C.A., Kornblit, A., Krautter, H.W., Lee, J.T-C., Mansfield, W.M., Miner, J.F., Morris, M.D., Oh, S-H., Rosamilia, J.M., Sapjeta, B.J., Short, K., Steiner, K., Muller, D.A., Voyles, P.M., Grazul, J.L., Shero, E.J., Givens, M.E., Pomarede, C., Mazanec, M., and Werkhoven, C.: In Electron Devices Meeting, (IEDM Technical Digest. International, Washington, DC, 2001), pp. 3.1.1–3.1.4.
11Hergenrother, J.M., Monroe, D., Klemens, F.P., Kornblit, A., Weber, G.R., Mansfield, W.M., Baker, M.R., Baumann, F.H., Bolan, K.J., Bower, J.E., Ciampa, N.A., Cirelli, R.A., Colonell, J.I., Eaglesham, D.J., Frackoviak, J., Gossman, H.J., Green, M.L., Hillenius, S.J., King, C.A., Kleinman, R.N., Lai, W.Y-C., Lee, J.T-C., Liu, R.C., Maynard, H.L., Morris, M.D., Oh, S-H., Pai, C-S., Rafferty, C.S., Rosamilia, J.M., Sorsch, T.W., Vuong, H-H.: In Electron Devices Meeting, (IEDM Technical Digest. International, Washington, DC, 2001), Sec. 76-3, pp. 7578
12Pierson, H.O.: Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications, 2nd ed. (Noyes Publications/William Andrew Publishing, LLC, Norwich, New York, 1992), pp. 3, 32
13Dey, S.K., Goswami, J., Das, A., Cao, W., Floyd, M. and Carpenter, R.: Growth and nanostructure of conformal ruthenium films by liquid-source metalorganic chemical vapor deposition. J. App. Phys . 94, 774 (2003).
14Papadatos, F., Skordas, S., Patel, Z., Consiglio, S. and Eisenbraun, E. in Silicon Materials—Processing Characterization and Reliability, edited by Veteran, J.L., O’Meara, D.L., Misra, V., and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 716, Warrendale, PA, 2002), p. B2.4.
15Park, S-E., Kim, H-M., Kim, K-B. and Min, S-H.: RuO2 thin film fabrication with plasma-enhanced chemical vapor deposition. Thin Solid Films 341, 52 (1999).
16Kang, S.Y., Choi, K.H., Lee, S.K., Hwang, C.S. and Kim, H.J.: Thermodynamic calculations and metalorganic chemical vapor deposition of ruthenium thin films using bis(ethyl-π-cyclopentadienyl)Ru for memory applications. J. Electrochem. Soc. 147, 1161 (2000).
17Aoyama, T., Kiyotoshi, M., Yamazaki, S. and Eguchi, K.: Chemical vapor deposition of Ru and its application in (Ba, Sr)TiO3 capacitors for future dynamic random access memories. Jpn. J. Appl. Phys. 38, 2194 (1999).
18Kadoshima, M., Nabatame, T., Hiratani, M., Nakamura, Y., Asano, I. and Suzuki, T.: Ruthenium films prepared by metalorganic chemical vapor deposition using Ru(dpm)3 dissolved with tetrahydrofuran Solvent. Jpn. J. Appl. Phys. 41, L347 (2002).
19Smith, K.C., Sun, Y.M., Mettlach, N.R., Hance, R.L. and White, J.M.: Evaluation of precursors for chemical vapor deposition of ruthenium. Thin Solid Films 376, 73 (2000).
20Ganesan, P.G., Eizenberg, M. and Dornfest, C.: Chemical vapor deposited RuOx films – Effect of oxygen flow rate. Electrochem Solid-State Lett. 149, G510 (2002).
21Matsui, Y., Hiratani, M., Nabatame, T., Shimamoto, Y. and Kimura, S.: Growth mechanism of Ru films prepared by chemical vapor deposition using bis(ethylcyclopentadienyl)ruthenium precursor. Electrochem Solid-State Lett. 4, C9 (2001).
22Shibutami, T., Kawano, K., Oshima, N., Yokoyama, S. and Funakubo, H.: Ruthenium film with high nuclear density deposited by MOCVD using a novel liquid precursor. Electrochem Solid-State Lett. 6, C117 (2003).
23Aoyama, T. and Eguchi, K.: Ruthenium films prepared by liquid source chemical vapor deposition using bis-(ethylcyclopentadienyl)ruthenium. J. Appl. Phys. 38, L1134 (1999).

Keywords

Related content

Powered by UNSILO

Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications

  • Filippos Papadatos (a1), Steve Consiglio (a1), Spyridon Skordas (a1), Eric T. Eisenbraun (a1), Alain E. Kaloyeros (a1), John Peck (a2), David Thompson (a2) and Cynthia Hoover (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.