Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T12:58:56.073Z Has data issue: false hasContentIssue false

Chemical Synthesis of Crystalline, Pure or Mn-doped ZnGa2O4 Powders at 90 °C

Published online by Cambridge University Press:  31 January 2011

A. Cuneyt Tas
Affiliation:
Merck Biomaterial GmbH, Frankfurterstrasse 250, Bldg. F129/218, D-64271 Darmstadt, Germany
Peter J. Majewski
Affiliation:
Max-Planck-Institut fuer Metallforschung, Pulvermetallurgisches Lab., D-70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut fuer Metallforschung, Pulvermetallurgisches Lab., D-70569 Stuttgart, Germany
Get access

Abstract

Crystalline, pure or Mn-doped ZnGa2O4 powders have been prepared in situ in urea (with or without enzyme urease)-containing Zn and Ga nitrate (and Mn nitrate) solutions by simply holding those for 24–48 h, at 90 °C, in screw-capped glass bottles in a constant-temperature laboratory oven. Single-phase pure or Mn-doped zinc gallate powders synthesized with the spinel crystal structure had an average particle size around 15 to 18 nm. Powders were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, inductively-coupled plasma atomic emission spectroscopy, simultaneous thermogravimetry and differential thermal analysis, Fourier-transformed infrared spectroscopy, and carbon and nitrogen analyses. Calcination behavior of the as-filtered powders was later studied in an air atmosphere over the temperature range of 90 to 1200 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.King, C.N., J. Vac. Sci. Technol. A 14, 1729 (1996).CrossRefGoogle Scholar
2.Itoh, S., Toki, H., Sato, Y., Morimoto, K., and Kishino, T., J. Elec trochem. Soc. 138, 1509 (1991).CrossRefGoogle Scholar
3.Yang, S-H. and , M. Yokoyama, Jpn. J. Appl. Phys. 36, 5145 (1997).CrossRefGoogle Scholar
4.Minami, T., Kuroi, Y., Miyata, T., Yamada, H., and Takata, S., J. Lumin. 72–74, 997 (1997).CrossRefGoogle Scholar
5.Minami, T., Kuroi, Y., and Takata, S., J. Vac. Sci. Technol. A 14, 1736 (1996).CrossRefGoogle Scholar
6.Jung, H-K., Park, D-S., and Park, Y.C., Mater. Res. Bull. 34, 43 (1999).CrossRefGoogle Scholar
7.Hsu, K-H. and Chen, K-S., Ceram. Int. 26, 469 (2000).CrossRefGoogle Scholar
8.Li, Y., Duan, X., Liao, H., and Qian, Y., Chem. Mater. 10, 17 (1998).CrossRefGoogle Scholar
9.Hirano, M., Imai, M., and Inagaki, M., J. Am. Ceram. Soc. 83, 977 (2000).CrossRefGoogle Scholar
10.Beauger, C., Grosseau, P., Guilhot, B., Huguenin, D., and Iacconi, P., J. Therm. Anal. Calorim. 59, 827 (2000).CrossRefGoogle Scholar
11.Appleman, D.E. and Evans, H.T., U.S. Geol. Surv. GD–73–003 (1973).Google Scholar
12.Matijevic, E., Langmuir 2, 12 (1986).CrossRefGoogle Scholar
13.Sordelet, D.J., Akinc, M., Panchula, M.L., Han, Y., and Han, M.H., J. Eur. Ceram. Soc. 14, 123 (1994).CrossRefGoogle Scholar
14.Shaw, W.H.R. and Bordeaux, J.J., J. Am. Chem. Soc. 77, 4729 (1955).CrossRefGoogle Scholar
15.Tas, A.C., J. Am. Ceram. Soc. 82, 1582 (1999).CrossRefGoogle Scholar
16.Tas, A.C. (Inventor), Method of Producing Crystalline Phosphor Powders, Patent pending, European Patent Office, Appl. Date Jan. 24, 2001, No. 01101538.5 (Owner: Max-Planck-Society, Germany).Google Scholar
17.Tas, A.C., Majewski, P.J., and Aldinger, F., J. Am. Ceram. Soc. (in press).Google Scholar
18.Simpson, R.E., Habeger, C., Rabinovich, A., and Adair, J.H., J. Am. Ceram. Soc. 81, 1377 (1998).CrossRefGoogle Scholar
19.Gauckler, L.J., Graule, T., and Baader, F., Mater. Chem. Phys. 61, 78 (1999).CrossRefGoogle Scholar
20.Socrates, G., Infrared Characteristic Frequencies (John Wiley & Sons: New York, 1994).Google Scholar
21.Yu, S-H. and Yoshimura, M., Chem. Mater. 12, 3805 (2000).CrossRefGoogle Scholar
22.Diakonov, I.I., Pokrovski, G.S., Benezeth, P., Schott, J., Dandurand, J.L., and Escalier, J., Geochim. Cosmochim. Acta 61, 1333 (1997).CrossRefGoogle Scholar
23.Ramanathan, S., Roy, S.K., Bhat, R., Upadhyaya, D.D., and Biswas, A.R., Ceram. Int. 23, 45 (1997).CrossRefGoogle Scholar
24.Barrer, R.M., Hydrothermal Chemistry of Zeolites (Academic Press: London, England, 1982).Google Scholar
25.Slamovich, E.B. and Aksay, I.A., J. Am. Ceram. Soc. 79, 239 (1996).CrossRefGoogle Scholar
26.Oren, E.E. and Tas, A.C., Metall. Mater. Trans. B 30, 1089 (1999).CrossRefGoogle Scholar