Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T19:32:19.271Z Has data issue: false hasContentIssue false

Characterization and optical properties of diamondlike carbon prepared by electron cyclotron resonance plasma

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
S-T. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
I. Bello
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
A. C. Cheung
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
C. S. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

Diamondlike carbon (DLC) films have been prepared on radio-frequency (rf) biased substrates maintained at low temperature using electron cyclotron resonance CH4–Ar plasma. The effects of negative rf bias and reactant gas composition on the bonding structure, hardness, and resistivity of the films were systematically investigated. DLC films deposited on PMMA (polymethyl methacrylate) were examined by optical methods to determine the absorption coefficients and the optical band gap. It was found that DLC films synthesized at bias voltage of 2(80–100) V and FCH4/FAr of 0.075–0.086 exhibit extreme hardness of more than 3000 kgf mm−2, high electrical resistivity up to 1014 Ω cm, band gap larger than 2.5 eV, and excellent optical transparency. The results indicate that ECR CH4–Ar plasma with low negative rf bias and suitable CH4/Ar gas ratio can process optically transparent and hard protective DLC films on PMMA plastics.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neuville, S. and Matthews, A., MRS Bull. 22 (9), 22 (1997).CrossRefGoogle Scholar
2.He, X.M., Li, W. Z., and Li, H. D., J. Vac. Sci. Technol. A 14 (4), 2039 (1996).CrossRefGoogle Scholar
3.McKenzie, D.R., Rep. Prog. Phys. 59, 1611 (1996).CrossRefGoogle Scholar
4.Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636 (1983).CrossRefGoogle Scholar
5.Kimock, F.M. and Knapp, D. J., Surf. Coat. Technol. 56, 273 (1993).CrossRefGoogle Scholar
6.Vora, H. and Moravec, T. J., J. Appl. Phys. 52, 6151 (1981).CrossRefGoogle Scholar
7.Vandentop, G.J., Kawasaki, M., Nix, R.M., Brown, I.G., Salmeron, M., and Somorjai, G. A., Phys. Rev. B 41, 3200 (1990).CrossRefGoogle Scholar
8.Weissmantel, C., Bewilogua, K., Schurer, C., Breuer, K., and Zscheile, H., Thin Solid Films 61, L1 (1979).CrossRefGoogle Scholar
9.Xu, S., Tay, B. K., Tan, H.S., Zhong, Li, Tu, Y. Q., Silva, S. R. P., and Milne, W. I., J. Appl. Phys. 79 (9), 7234 (1996).CrossRefGoogle Scholar
10.Andry, P.S., Pastel, P. W., and Varhue, W. J., J. Mater. Res. 11, 221 (1996).CrossRefGoogle Scholar
11.Nagai, I., Ishitani, A., Kuroda, H., Yoshikawa, M., and Nagai, N., J. Appl. Phys. 67 (6), 2890 (1990).CrossRefGoogle Scholar
12.Kuo, S. C., Kunhardt, E. E., and Srivatsa, A.R., Appl. Phys. Lett. 59 (20), 2532 (1991).CrossRefGoogle Scholar
13.Park, K. C., Moon, J. H., Jang, J., and Oh, M. H., Appl. Phys. Lett. 68 (25), 3594 (1996).CrossRefGoogle Scholar
14.Pastel, P. W. and Varhue, W. J., J. Vac. Sci. Technol. A 9 (3), 1129 (1991).CrossRefGoogle Scholar
15.Dusek, V., Vanecek, M., Siroky, P., and Vorlicek, V., Diamond and Related Materials 2, 397 (1993).CrossRefGoogle Scholar
16.Maruyama, K., Inoun, T., Yamamoto, M., Morinaga, T., Saitoh, H., and Kamata, K., J. Mater. Sci. Lett. 13, 1793 (1994).CrossRefGoogle Scholar
17.Kamata, K., Inoue, T., Sugai, K. I., Asitoh, H., and Maruyama, K., J. Appl. Phys. 78 (2), 1394 (1995).CrossRefGoogle Scholar
18.Lifshitz, Y., Lempert, G. D., and Grossman, E., Phys. Rev. Lett. 72, 2753 (1994).CrossRefGoogle Scholar
19.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
20.McKenzie, D. R., Botten, L. C., and McPhedran, R. C., Phys. Rev. Lett. 51, 280 (1983).CrossRefGoogle Scholar
21.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
22.Robertson, J. and O'Reilly, E., Phys. Rev. B 35, 2946 (1987).CrossRefGoogle Scholar
23.Rossi, F., André, B., Veen, A. V., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).CrossRefGoogle Scholar
24.McCulloch, D. G., Prawer, S., and Hoffman, A., Phys. Rev. B 50 (9), 5909 (1994).CrossRefGoogle Scholar
25.Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67, 1007 (1990).CrossRefGoogle Scholar
26.Silva, S. R. P., Robertson, J., Rusli, , Amaratunga, G. A. J., and Schwan, J., Philos. Mag. B 74 (4), 369 (1996).CrossRefGoogle Scholar
27.Zhang, W. and Catherine, Y., Surf. Coat. Technol. 47, 69 (1991).CrossRefGoogle Scholar
28.Ishikawa, J., Takeiri, Y., Ogawa, K., and Takagi, T., J. Appl. Phys. 61, 2509 (1987).CrossRefGoogle Scholar
29.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62 (11), 1290 (1989).CrossRefGoogle Scholar