Skip to main content Accessibility help
×
Home

Carbon–silicon alloy fibers: Optimizing tensile properties by control of the stabilization stage

  • S. Lu (a1), B. Rand (a1) and K. D. Bartle (a2)

Abstract

The stabilization stage in the processing of carbon–silicon alloy (CSA) precursor fibers is investigated in this study. The critical stabilization parameters are identified and shown to control the mechanical properties of fibers both at the stabilization stage and, after further pyrolysis and controlled oxidation, to produce oxidation-resistant fibers. The attainment of infusibility in the stabilized fibers, necessary for the production of CSA fibers, determines the lowest stabilization degree, whereas the highest stabilization degree can be identified from the relationship between stabilization temperature and tensile properties of CSA fibers, thus enabling the optimum stabilization conditions to be determined. The CSA fibers produced by proper control of stabilization conditions significantly enhance mechanical properties, which are more than double those of CSA fibers obtained previously. Fourier transform infrared spectroscopy and nuclear magnetic resonance studies show that at stabilization temperatures above the optimum there is significant formation of silica in the stabilized fibers. This leads to a higher modulus but lower tensile strength and elongation.

Copyright

References

Hide All
1.Mc, D.W.Kee, Chemistry and Physics of Carbon, edited by Thrower, P.A. (Marcel Dekker, New York, 1991), Vol. 23, p. 173.
2.Yajima, S., Silicon Carbide Fibers in Handbook of Composites: Vol. 1, Strong Fibers, edited by Watt, W. and Perov, B. (Elsevier, Amsterdam, 1985), p. 201.
3.Yajima, S., Hayashi, J., and Omori, M., Chem. Lett. 9, 931 (1975).
4.Cooke, T.F., J. Am. Ceram. Soc. 74, 2959 (1991).
5.Takeda, M., Sakamoto, J., Saeki, S., Imai, Y., and Ichikawa, H., Ceram. Eng. Sci. Proc. 16, 37 (1995).
6.Lu, S., Rand, B., Bartle, K.D., and Reid, A.W., Carbon 35, 1485 (1997).
7.Lu, S., Rand, B., and Bartle, K.D., J. Mater. Sci. 34, 571 (1999).
8.Lipowitz, J., Ceram. Bull. 70, 1888 (1991).
9.Edward Rast, H.E. III, Fain, C.C., and Edie, D.D., Carbon '90, Int. Carbon Conf. (Paris, 1990), p. 168.
10.Laffon, C., Flank, A.M., Lagarde, P., Laridjani, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J., Miquel, J.I., Hommel, H., and Legrand, A.P., J. Mater. Sci. 25, 1503 (1989).
11.Otani, S., Carbon 4, 425 (1966).
12.Lin, S.S., SAMPE J. 27, 9 (1991).
13.Stevens, W.C. and Diefendorf, R.J., Proc. 4th Int. Carbon Conf., Baden-Baden (Deut. Keram. Ges., 1986), p. 37.
14.Singer, L.S. and Mitchell, S., Carbon 35, 599 (1997).
15.Kasuh, T. and Marsh, H., Carbon '88, Int. Carbon Conf. (Newcastle Upon Tyne, UK, 1988), p. 452.
16.Hasegawa, Y., Ilmura, M., and Yajima, S., J. Mater. Sci. 15, 720 (1980).
17.Lavin, J.G., Carbon 30, 351 (1992).
18.Mark, J.E., Allcock, H.R., and West, R., Inorganic Polymers (Prentice Hall, New Jersey, 1992).
19.Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Keuhn, D.W., and Davis, A., Appl. Spectrosc. 35, 475 (1981).
20.Grint, A., Proud, G.P., Poplett, I.J.F, Bartle, K.D., Wallace, S., and Matthews, R.S., Fuel 68, 1490 (1989).
21.Lipowitz, J., Freeman, H.A., Chen, R.T., and Prack, E.R., Adv. Ceram. Mater. 2, 121 (1987).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed