Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:50:25.628Z Has data issue: false hasContentIssue false

Carbon nanotubular structures synthesis by means of ultraviolet laser ablation

Published online by Cambridge University Press:  31 January 2011

N. Braidy
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
M. M. El Khakani
Affiliation:
Institut National de la Recherche Scientifique, INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
G. G. Botton
Affiliation:
Materials Technology Laboratory-CANMET, 568 Rue Booth, Ottawa, Ontario, Canada K1A 0G1
Get access

Abstract

We report on the synthesis of carbon nanotubular structures produced for the first time by means of pulsed KrF laser ablation of a graphite pellet at high temperature (1150 °C), under high argon gas pressure (500 torr), and at relatively high ultraviolet (UV) laser intensities (8 × 108 W/cm2). The carbon nanotubular structures were directly observed by transmission electron microscopy and characterized by micro-Raman spectroscopy. Nanohorns (∼2.5 nm diameter and ∼10 nm long), a few single-wall nanotubes (1.2 to 1.5 nm diameter), and other nanotubular structures (such as graphitic nanocages and low-aspect-ratio nanotubules) were clearly observed in the carbon deposit. Raman spectra in the low-frequency range confirmed a population of tubular structures with diameters ranging from 0.7 to 2.0 nm. It is shown that the relatively high UV laser intensity used here favors the growth of various nanotubular structures to the detriment of single-wall nanotubes.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S. and Ichihashi, T., Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
2.Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, United Kingdom, 1998).CrossRefGoogle Scholar
3.Ebbesen, T.W., Lezec, H.J., Hiura, H., Benett, J.W., Ghaemi, H.F., and Thio, T., Nature (London) 382, 54 (1996).CrossRefGoogle Scholar
4.Ugarte, D., Stökli, T., Bonard, J.M., Châtelain, A., and deHeer, W.A., Appl. Phys. A 67, 101 (1998).CrossRefGoogle Scholar
5.Kong, J., Franklin, R.N., Zhou, C., Chapline, M., Peng, S., Kyeongjae, C., and Dai, H., Nature (London) 287, 622 (2000).Google Scholar
6.Hu, J., Ouyang, M., Yang, P., and Lieber, C.M., Nature (london) 399, 48 (1999).CrossRefGoogle Scholar
7.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
8.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Zxu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fisher, J.E., and Smalley, R.E., Science 273, 493 (1996).CrossRefGoogle Scholar
9.Dillon, A.C., Parilla, P.A., Alleman, J.L., Perkins, J.D., and Heben, M.J., Chem. Phys. Lett. 316, 13 (2000).CrossRefGoogle Scholar
10.Yudasaka, M., Zhang, M., and Iijima, S., Chem. Phys. Lett. 323, 549 (2000).CrossRefGoogle Scholar
11.Rinzler, A.G., Liu, J.L., Dai, H.J., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heyman, D., Colbert, D.T., Lee, R.S., Fisher, J.E., Rao, A.M., Eklund, P.C., and Smalley, R.E., Appl. Phys. A 67, 29 (1998).CrossRefGoogle Scholar
12.Braidy, N., Khakani, M.A. El, and Botton, G.A., Chem. Phys. Lett. 354, 88 (2002).CrossRefGoogle Scholar
13.Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K., Chem. Phys. Lett. 309, 165 (1999).CrossRefGoogle Scholar
14.Lin, X., Wang, K., Dravid, V.P., Chang, R.H.P., and Ketterson, J.B., Appl. Phys. Lett. 64, 181 (1994).CrossRefGoogle Scholar
15.Cullen, S.L., Botton, G.A., Kirkland, A.I., Brown, P.D., and Humphreys, C.J., in Electron Microscopy and Analysis 1993 Inst. Phys. Conf. Ser. 138, edited by Craven, A.J. (IOP, London, United Kingdom, 1993), p. 79.Google Scholar
16.Zhang, Y., Gu, H., and Iijima, S., Appl. Phys. Lett. 73, 3827 (1998).CrossRefGoogle Scholar
17.Iijima, S., Chem. Sripta 14, 117 (19781979).Google Scholar
18.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S., Science 275, 187 (1997).CrossRefGoogle Scholar
19.Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., and Eklund, P.C., Phys. Rev. Lett. 80, 3779 (1998).CrossRefGoogle Scholar
20.Braidy, N., Khakani, M.A. El, and Botton, G.A., Carbon (2002, in press).Google Scholar
21.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments, Springer Series in Materials Science, Vol. 5 (Springer-Verlag, Berlin, Germany, 1988).CrossRefGoogle Scholar
22.Saito, R., Takeya, T., Kimura, T., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. B 59, 2388 (1999).CrossRefGoogle Scholar