Skip to main content Accessibility help

Cadmium selenide: Surface and nanoparticle energetics

  • Fen Xu (a1), Wei Zhou (a1) and Alexandra Navrotsky (a1)


Cadmium selenide (CdSe) belongs to a class of important II–VI semiconductors widely used in optical, sensor, and laser materials and quantum-dot light-emitting diodes. Here we present the first direct calorimetric measurement of the surface energy of wurtzite CdSe. CdSe nanoparticles with particle size between 20 and 60 nm were prepared by a hydrothermal method without additives to control morphology, and the surface energy was derived from the drop solution enthalpies in molten sodium molybdate and from water adsorption calorimetry. The surface energy of the hydrated surface is 1.31 ± 0.26 J/m2, whereas that of the anhydrous surface is 1.65 ± 0.27 J/m2. These values are significantly lower than those for ZnO and many other oxides.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Csik, I., Russo, S.P., and Mulvaney, P.: Density functional study of surface passivation of nonpolar wurtzite CdSe surfaces. J. Phys. Chem. C 112, 20413 (2008).
2.Zakharov, O., Rubio, A., and Cohen, M.L.: Calculated structural and electronic properties of CdSe under pressure. Phys. Rev. B 51, 4926 (1995).
3.Wang, W.Z., Geng, Y., Yan, P., Liu, F.Y., Xie, Y., and Qian, Y.T.: A novel mild route to nanocrystalline selenides at room temperature. J. Am. Chem. Soc. 121, 4062 (1999).
4.Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J., and Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 (2000).
5.Coe, S., Woo, W.K., Bawendi, M., and Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002).
6.Bawendi, M.G., Steigerwald, M.L., and Brus, L.E.: The quantum mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 41, 477 (1990).
7.Chen, C.C., Herhold, A.B., Johnson, C.S., and Alivisatos, A.P.: Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398 (1997).
8.Herron, N., Wang, Y., and Eckert, H.: Synthesis and characterization of surface-capped, size-quantized CdS clusters. Chemical control of cluster size. J. Am. Chem. Soc. 112, 1322 (1990).
9.Li, Y.D., Liao, H.W., Ding, Y., Fan, Y., Zhang, Y., and Qian, Y.T.: Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg. Chem. 38, 1382 (1999).
10.Yi, H.C. and Moore, J.J.: Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25, 1159 (1990).
11.Bandaranayake, R.J., Wen, G.W., Lin, J.Y., Jiang, H.X., and Sorensen, C.M.: Structural phase behavior in II-VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831 (1995).
12.Wang, Y. and Herron, N.: Nanometer-sized semiconductor clusters: Materials synthesis, quantum-size effects, and photophysical properties. J. Phys. Chem. 95, 525 (1991).
13.Borade, R.B.: Synthesis and characterization of ferrisilicate zeolite of pentasil group. Zeolites 7, 398 (1987).
14.Zhu, J.J., Koltypin, Y., and Gedanken, A.: General sonochemical method for the preparation of nanophasic selenides: Synthesis of ZnSe nanoparticles. Chem. Mater. 12, 73 (2000).
15.Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).
16.Rajh, T., Micic, O.I., and Nozik, A.J.: Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J. Phys. Chem. 97, 11999 (1993).
17.Qiao, Z.P., Xie, Y., Xu, J.G., Zhu, Y.J., and Qian, Y.T.: Gamma-radiation synthesis of the nanocrystalline semiconductors PbS and CuS. J. Colloid Interface Sci. 214, 459 (1999).
18.McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788 (1997).
19.Levchenko, A.A., Li, G.S., Boerio-Goates, J., Woodfield, B.F., and Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 (2006).
20.Mazeina, L. and Navrotsky, A.: Enthalpy of water adsorption and surface enthalpy of goethite (alpha-FeOOH) and hematite (alpha-Fe2O3). Chem. Mater. 19, 825 (2007).
21.Zhang, P., Xu, F., Navrotsky, A., Lee, J.S., Kim, S.T., and Liu, J.: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 (2007).
22.Radha, A.V., Bomati-Miguel, O., Ushakov, S.V., Navrotsky, A., and Tartaj, P.: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133 (2009).
23.Deore, S., Xu, F., and Navrotsky, A.: Oxide-melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide. Am. Mineral. 93, 779 (2008).
24.Pramanik, P. and Bhattacharya, R.N.: Chemical methods for the deposition of thin-films of Sb2Se3. J. Solid State Chem. 44, 425 (1982).
25.Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).
26.Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).
27.Chen, S.S., Avila-Paredes, H.J., Kim, S., Zhao, J.F., Munir, Z.A., and Navrotsky, A.: Direct calorimetric measurement of grain boundary and surface enthalpies in yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 11, 3039 (2009).
28.McHale, J.M., Navrotsky, A., and Perrotta, A.J.: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline gamma-Al2O3 and alpha-Al2O3. J. Phys. Chem. B 101, 603 (1997).
29.Zhou, W., Ushakov, S.V., Wang, T., Ekerdt, J.G., Demkov, A.A., and Navrotsky, A.: Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107, 123514 (2010).
30.Manna, L., Wang, L.W., Cingolani, R., and Alivisatos, A.P.: First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 109, 6183 (2005).
31.Csik, I., Russo, S.P., and Mulvaney, P.: Density functional study of non-polar surfaces of wurtzite CdSe. Chem. Phys. Lett. 414, (2005).


Cadmium selenide: Surface and nanoparticle energetics

  • Fen Xu (a1), Wei Zhou (a1) and Alexandra Navrotsky (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed