Skip to main content Accessibility help
×
Home

Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity

  • Joseph E. Jakes (a1), Rod S. Lakes (a2) and Don S. Stone (a3)

Abstract

Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01–100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli generated from dynamic mechanical analysis and broadband viscoelastic spectroscopy but are 18–50% higher. Included in the developed protocols is an experimental method based on measured indent area to remove from consideration indents for which viscoplastic deformation takes place during unloading. Ancillary measurements of indent area and depth reveal no detectable (∼1%) change in area between 200 s and 4.9 days following removal of indenter.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jjakes@fs.fed.us

References

Hide All
1.Lakes, R.: Viscoelastic Materials. (Cambridge University Press, Cambridge, UK, 2009), pp. 1–110.
2.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mat. Sci. Eng. R 44, 91 (2004).
3.Vandamme, M. and Ulm, F-J.: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43, 3142 (2006).
4.Giannakopoulos, A.E.: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids. 54, 1305 (2006).
5.Lee, E.H. and Radok, J.R.M.: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).
6.Hunter, S.C.: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids. 8, 219 (1960).
7.Lee, E.H.: Stress analysis for linear viscoelastic materials. Rheol. Acta. 1, 426 (1961).
8.Graham, G.A.C.: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27 (1965).
9.Ting, T.C.T.: Contact stresses between rigid indenter and viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).
10.Graham, G.A.C.: The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).
11.Herbert, E.G., Oliver, W.C., Lumsdaine, A., and Pharr, G.M.: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626 (2009).
12.Loubet, J.L., Oliver, W.C., and Lucas, B.N.: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195 (2000).
13.Asif, S.A.S., Wahl, K.J., Colton, R.J., and Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 5838 (2001).
14.White, C.C., Vanlandingham, M.R., Drzal, P.L., Chang, N.K., and Chang, S.H.: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci. Part B: Polym. Phys. 43, 1812 (2005).
15.Jäger, A., Lackner, R., and Eberhardsteiner, J.: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42, 293 (2007).
16.Oyen, M.L.: Relating viscoelastic nanoindentation creep and load relaxation experiments. Int. J. Mater. Res. 99, 823 (2008).
17.Oyen, M.L. and Cook, R.F.: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).
18.Beake, B.: Modelling indentation creep of polymers: A phenomenological approach. J. Phys. D: Appl. Phys. 39, 4478 (2006).
19.Lu, H., Wang, B., Ma, J., Huang, G., and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).
20.Tweedie, C.A. and Van Vliet, K.J.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).
21.Vanlandingham, M.R., Chang, N.K., Drzal, P.L., White, C.C., and Chang, S.H.: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci. Part B: Polym. Phys. 43, 1794 (2005).
22.Odegard, G.M., Gates, T.S., and Herring, H.M.: Characterization of viscoelastic properties of polymeric materials through nanoindentation, in Proceedings of the Society for Experimental Mechanics, Inc 52, 130 (2005).
23.King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).
24.Bolshakov, A. and Pharr, G.M.: Inaccuracies in Sneddon’s solution for elastic indentation by a rigid cone and their implications for nanoindentation data analysis, in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 189.
25.Chudoba, T. and Jennett, N.M.: Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D: Appl. Phys. 41, 215407 (2008).
26.Strader, J.H., Shim, S., Bei, H., Oliver, W.C., and Pharr, G.M.: An experimental evaluation of the constant β relating the contact stiffness to the contact area in nanoindentation. Philos. Mag. 86, 5285 (2006).
27.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113 (2008).
28.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
29.Cheng, Y-T. and Cheng, C-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 (2005).
30.Cheng, Y-T. and Cheng, C-M.: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng., A 409, 93 (2005).
31.Cheng, Y-T., Cheng, C-M., and Wangyang, N.: Methods of obtaining instantaneous modulus of viscoelastic solids using displacement-controlled instrumented indentation with axisymmetric indenters of arbitrary smooth profiles. Mater. Sci. Eng., A 423, 2 (2006).
32.Cheng, Y-T., Wangyang, N., and Cheng, C-M.: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20, 3061 (2005).
33.Fujisawa, N. and Swain, M.V.: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).
34.Ngan, A.H.W., Wang, H.T., Tang, B., and Sze, K.Y.: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831 (2005).
35.Tang, B. and Ngan, A.H.W.: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).
36.Fujisawa, N. and Swain, M.V.: Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation. J. Mater. Res. 21, 708 (2006).
37.Fujisawa, N. and Swain, M.V.: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893 (2007).
38.Tong, J., Sun, J., Chen, D., and Zhang, S.: Factors impacting nanoindentation testing results of the cuticle of dung beetle Copris ochus Motschulsky: J. Bionics Eng. 1, 221 (2004).
39.Chien-Kuo, L., Sanboh, L., Li-Piin, S., and Nguyen, T.: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 33503 (2006).
40.Ebenstein, D.M. and Pruitt, L.A.: Nanoindentation of biological materials. Nano Today 1, 26 (2006).
41.Feng, G. and Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).
42.Ngan, A.H.W. and Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).
43.Briscoe, B.J., Fiori, L., and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).
44.Tang, B., Ngan, A., and Lu, W.: An improved method for the measurement of mechanical properties of bone by nanoindentation. J. Mater. Sci. Mater. Med. 18, 1875 (2007).
45.Jakes, J.E., Lakes, R.S., and Stone, D.S.: Broadband nanoindentation of glassy polymers: Part II. Viscoplasticity. J. Mater. Res. Soc. 27(2), 475 (2011).
46.Stone, D.S., Yoder, K.B., and Sproul, W.D.: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A 9, 2543 (1991).
47.Yee, A.F. and Takemori, M.T.: Dynamic bulk and shear relaxation in glassy polymers. I. Experimental techniques and results on PMMA. J. Polym. Sci., Polym. Phys. Ed. 20, 205 (1982).
48.Afifi, H.A.: Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC. Polym. Plast. Technolo. and Eng. 42, 193 (2003).
49.Fukuhara, M. and Sampei, A.: Low-temperature elastic moduli and dilational and shear internal friction of polycarbonate. Jpn. J. Appl. Phys. 35, 3218 (1996).
50.Capodagli, J. and Lakes, R.: Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time–temperature superposition. Rheologica Acta. 47, 777 (2008).
51.Tweedie, C.A. and Van Vliet, K.J.: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029 (2006).
52.Low, I.M., Paglia, G., and Shi, C.: Indentation responses of viscoelastic materials. J. Appl. Polym. Sci. 70, 2349 (1998).
53.VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F., and Meyers, G.F.: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).
54.Briscoe, B.J. and Sebastian, K.S.: The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. London, Ser. A 452, 439 (1996).
55.Anand, L. and Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123 (2006).
56.Veprek, R.G., Parks, D.M., Argon, A.S., and Veprek, S.: Erratum to “Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation” [Mater. Sci. Eng. A 422 (2006) 205–217] (DOI:10.1016/j.msea.2006.02.020). Mater. Sci. Eng., A 448, 366 (2007).
57.Strojny, A., Xia, X., Tsou, A., and Gerberich, W.W.: Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties. J. Adhes. Sci. Technol. 12, 1299 (1998).
58.Mook, W.M. and Gerberich, W.W.: Effect of hydrostatic pressure on indentation modulus, in Fundamentals of Nanoindentation and Nanotribology IV, edited by Le Bourhis, E., Morris, D.J., Oyen, M.L., Schwaiger, R., and Staedler, T. (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008) 1049-AA02-09, p. 21.
59.Wolf, B. and Goken, M.: On the pressure dependence of the indentation modulus. Z. Metallkd. 96, 1247 (2005).

Keywords

Related content

Powered by UNSILO

Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity

  • Joseph E. Jakes (a1), Rod S. Lakes (a2) and Don S. Stone (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.