Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T12:16:24.408Z Has data issue: false hasContentIssue false

Borospherene molecular junction-based sensor for detecting radium and radon in water

Published online by Cambridge University Press:  12 August 2020

Jupinder Kaur*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab143005, India
Ravinder Kumar
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab143005, India
Rajan Vohra
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab143005, India
Ravinder Singh Sawhney
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab143005, India
*
a)Address all correspondence to this author. e-mail: jupinderece.rsh@gndu.ac.in
Get access

Abstract

The capability of borospherene to detect radioactive pollutants (radon and radium) is investigated utilizing density functional theory and nonequilibrium Green's function regime. The quantum transport is evaluated by calculating the density of states, chemical potential, transmission and molecular energy spectra, highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap, electron densities, current–voltage curve, and differential and quantum conductance. LUMO-mediated transmission is observed in all the cases. The conduction considerably declines in B40 molecular junction doped with radioactive pollutants in comparison to pure B40 molecular junction. This decrease in conduction is due to reduced electron density and higher chemical potential in doped B40 junctions. Due to different values of current and differential conductance, we propose utilization of B40 in detecting the presence of radioactive pollutants in underground water. Also, all molecular junctions assay lifting of Coulomb blockade at equilibrium state; thus, these devices can be effectively utilized in single-electron transistor applications.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhai, H.J., Zhao, Y.F., Li, W.L., Chen, Q., Bai, H., Hu, H.S., Piazza, Z.A., Tian, W.J., Lu, H.G., Wu, Y.B., Mu, Y.W., Wei, G.F., Liu, Z.P., Li, J., Li, S.D., and Wang, L.S.: Observation of an all-boron fullerene. Nat. Chem. 6, 727731 (2014).CrossRefGoogle ScholarPubMed
He, R. and Zeng, X.C.: Electronic structures and electronic spectra of all-boron fullerene B40. Chem. Commun. 51, 31853188 (2015).CrossRefGoogle ScholarPubMed
Yang Z, Z., Ji, Y.L., Lan, G., Xu, L.C., Liu X, X., and Xu, B.: Design molecular rectifier and photodetector with all boron fullerene. Solid State Commun. 217, 3842 (2015).CrossRefGoogle Scholar
Dong, H., Hou, T., Lee, S.T., and Li, Y.: New Ti-decorated B40 fullerene as a promising hydrogen storage material. Sci. Rep. 5, 9952 (2015).CrossRefGoogle ScholarPubMed
Dong, H., Lin, B., Gilmore, K., Hou, T., Lee, S.T., and Li, Y.: B40 fullerene: An efficient material for CO2 capture, storage and separation. Curr. Appl. Phys. 15, 1084 (2015).CrossRefGoogle Scholar
Gao, G., Ma, F., Jiao, Y., Sun, Q., Jiao, Y., Waclawik, E., and Du, A.: Modelling CO2 adsorption and separation on experimentally-realized B40 fullerene. Comput. Mater. Sci. 108, 3841 (2015).CrossRefGoogle Scholar
Moradi, M., Vahabi, V., and Bodaghi, A.: Computational study on the fullerene-like B40 Borospherene properties and its interaction with ammonia. J. Mol. Liq. 223, 315320 (2016).CrossRefGoogle Scholar
Tang, C. and Zhang, X.: The hydrogen storage capacity of Sc atoms decorated porous boron fullerene B40: A DFT study. Int. J. Hydrogen Energy 41, 1699216999 (2016).CrossRefGoogle Scholar
Maniei, Z., Shakerzadeh, E., and Mahdavifar, Z.: Theoretical approach into potential possibility of efficient NO2 detection via B40 and Li-B40 fullerenes. Chem. Phys. Lett. 691, 360365 (2018).CrossRefGoogle Scholar
Wang, W., Guo, Y.D., and Yan, X.H.: The spin-dependent transport of transition-metal-encapsulated B40 fullerene. RSC Adv. (2016). doi: 10.1039/C6RA00179C.Google Scholar
Shakerzadeh, E., Biglari, Z., and Tahmasebi, E.: M-B40 (M = Li, Na, K) serving as a potential promising novel NLO nanomaterial. Chem. Phys. Lett. 654, 7680 (2016).CrossRefGoogle Scholar
Li, Z., Yu, G., Zhang, X., Huang, X., and Chen, W.: Bonding the superalkali M3O (M = Li and K): An effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40 nanocage. Physica E 94, 204210 (2017).CrossRefGoogle Scholar
An, Y., Zhang, M., Wu, D., Fu, Z., Wang, T., and Xia, C.: Electronic transport properties of the first all-boron fullerene B40 and its metallofullerene Sr@B40. Phys. Chem. Chem. Phys. 18, 1202412028 (2016).CrossRefGoogle ScholarPubMed
Shah, E.V. and Roy, D.R.: Sc3N and Sc2C2 encapsulated B40: Smarter than its carbon analogue. Physica E 84, 354360 (2016).CrossRefGoogle Scholar
Wang, J., Yu, T., Gao, Y., and Wang, Z.: All-Boron fullerene B40: A superatomic structure. Sci. China Mater. 60, 12641268 (2017).CrossRefGoogle Scholar
Kaur, R. and Kaur, J.: The electronic transport properties of B40 fullerenes with chalcogens as anchor atoms. J. Mol. Model. 23, 351 (2017).CrossRefGoogle ScholarPubMed
Kaur, J. and Kaur, R.: To delve about the charge transport properties of p-block elements doped M@B40(M = Al, Si, P, S) molecular device. 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, pp. 1-4 (2017). doi: 10.1109/ICCCNT.2017.8203969.;.CrossRefGoogle Scholar
Kuwabara, T., Sugiyama, H., Yamaguchi, T. and Takahashi, K.: Inverted type bulk-heterojunction organic solar cell using electro-deposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766 (2009).CrossRefGoogle Scholar
Paulsson, M. and Datta, S.: Thermoelectric effect in molecular electronics. Phys. Rev. B: Condens. Matter Mater. Phys. 67, 241403 (2003).CrossRefGoogle Scholar
Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006).CrossRefGoogle ScholarPubMed
Beebe, J.M., Kim, B., Gadzuk, J.W., Frisbie, C.D., and Kushmerick, J.G.: Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2, 827 (2008).CrossRefGoogle ScholarPubMed
Kaur, R.P., Sawhney, R.S., and Engles, D.: Augmenting molecular junctions with different transition metal contacts. J. Multiscale Modell. 5, 1350009 (2014).CrossRefGoogle Scholar
Atomistic Toolkit Manual, Quantumwise Inc. Atomistix toolkit version 13.8.0, Quantumwise A/S (http://quantumwise.com)Google Scholar
Xue, Y., Datta, S., and Ratner, M.A.: First-principles based matrix Green's function approach to molecular electronic devices: General formulism. Chem. Phys. 281, 151 (2002).CrossRefGoogle Scholar
Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., and Stokbro, K.: Density-functional method for non-equilibrium electron transport. Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
Taylor, J., Guo, H., and Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001).CrossRefGoogle Scholar
Carlo, A.D.: Tight-binding methods for transport and optical properties in realistic nanostructures. Physica B 314, 211219 (2002).CrossRefGoogle Scholar
Pecchia, A. and Carlo, A.D.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 14971562 (2004).CrossRefGoogle Scholar
Magoga, M. and Joachim, C.: Conductance and transparence of long molecular wires. Phys. Rev. B 56, 47224729 (1997).CrossRefGoogle Scholar
Corbel, S., Cerda, J., and Sautet, P.: Ab initio calculations of scanning tunneling microscopy images within a scattering formalism. Phys. Rev. B 60, 19891999 (1999).CrossRefGoogle Scholar
Cerdá, J. and Soria, F.: Accurate and transferable extended Huckel type tight-binding parameters. Phys. Rev. B 61, 79657971 (2000).CrossRefGoogle Scholar
Emberly, E.G. and Kirczenow, G.: Multiterminal molecular wire systems: A self-consistent theory and computer simulations of charging and transport. Phys. Rev. B 62, 1045110458 (2001).CrossRefGoogle Scholar
Zahid, F., Paulsson, M., Polizzi, E., Ghosh, A.W., Siddiqui, L., and Datta, S.: A self-consistent transport model for molecular conduction based on extended Huckel theory with full three-dimensional electro statistics. J. Chem. Phys. 123, 064707 (2005).CrossRefGoogle Scholar
Kienle, D., Cerda, J.I., and Ghosh, A.W.: Extended Huckel theory for band structure, chemistry and transport. I. Carbon nanotubes. J. Appl. Phys. 100, 043714 (2006).CrossRefGoogle Scholar
Kienle, D., Bevan, K.H., Liang, G.-C., Siddiqui, L., Cerda, J.I., and Ghosh, A.W.: Extended Huckel theory for band structure, chemistry and transport. II. Silicon. J. Appl. Phys. 100, 043715 (2006).CrossRefGoogle Scholar
Fronzi, M., Ssoon, A., Delley, B., Traversa, E., and Stampfly, C.: Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation. J. Chem. Phys. 131, 104701 (2009).CrossRefGoogle Scholar
Fronzi, M., Ssoon, A., Delley, B., Traversa, E., and Stampfly, C.: Water adsorption on the stoichiometric and reduced CeO2(111) surface: A first-principles investigation. Phys. Chem. Phys. 11, 91889199 (2009).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Vohra, R. and Sawhney, R.S.: Adenine based molecular biomarker for the diagnosis of lead and mercury presence in a live sample. J. Nanoelectron. Optoelectron. 13 554561(8) (2018).CrossRefGoogle Scholar
Rodrigues, V., Fuhrer, T., and Ugarte, D.: Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124 (2000).CrossRefGoogle ScholarPubMed
Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M.: Conductance of a molecular junction. Science 278, 252254 (1997).CrossRefGoogle Scholar
Walia, G.K. and Randhawa, D.K., Electronic and transport properties of silicene-based ammonia nanosensors: an ab initio study. Struct. Chem. 29, 257 (2018). doi: 101007/s11224-017-1025-9.Google Scholar
Landauer, R.: Conductance determined by transmission: Probes and quantized constriction resistance. J. Phys.: Condens. Matter 1, 8099 (1989).Google Scholar
Heurich, J., Cuevas, J.C., Wenzel, W., and Schon, G.: Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett. 88, 256803 (2002).CrossRefGoogle ScholarPubMed
Lawson, J.W. and Bauschlieher, C.W.: Transport in molecular junctions with different metallic contacts. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 125401 (2006).CrossRefGoogle Scholar
Datta, S.: Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).CrossRefGoogle Scholar