Skip to main content Accessibility help

(Bi,Sb)2Te3-PbTe chalcogenide alloys: Impact of the cooling rate and sintering parameters on the microstructures and thermoelectric performances

  • Alexandre Jacquot (a1), Thomas Jürgen (a2), Joachim Schumann (a3), Martin Jägle (a4), Harald Böttner (a4), Thomas Gemming (a5), Jürgen Schmidt (a6) and Dirk Ebling (a7)...
  • Please note a correction has been issued for this article.


(Bi,Sb)2Te3 + 4 mol%PbTe was quenched in water and on a rotating copper wheel (melt spinning). It was found that PbTe was immiscible in (Bi,Sb)2Te3 when the material is quenched in water and that the thermoelectric figure of merit increases by annealing. Natural nanostructures (nns) were found in melt-spun (Bi,Sb)2Te3, whereas they were hard to detect in (Bi,Sb)2Te3 alloyed with PbTe. There is a correlation between the orientation of the strain field and the nns. Within the grains of melt-spun (Bi,Sb)2Te3 alloyed with PbTe, the chemical composition was homogeneous. An enrichment of Pb was found at the grain boundaries. Quenched (Bi,Sb)2Te3 alloyed with 0.3 wt%PbTe have been spark plasma sintered (SPS). After optimization, the Seebeck coefficients of the melt-spun SPS (MS-SPS) materials were larger than for materials quenched in water and sintered (QW-SPS) materials. In addition, the mobility increases with the carrier concentration in MS-SPS materials, whereas it decreases in QW-SPS materials.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tritt, T.M.: Harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, 188 (2006).
2.Böttner, H., Ebling, D.G., Jacquot, A., König, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of sparc plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).
3.Ebling, D.G., Jacquot, A., Jägle, M., Böttner, H., Kühn, U., and Kirste, L.: Structure and thermoelectric properties of nanocomposite bismuth telluride prepared by melt spinning or by partially alloying with IV–VI compounds. Phys. Status Solidi RRL 1(6), 238 (2007).
4.Dado, B., Gelbstein, Y., Mogilansky, D., Ezersky, V. and Dariel, M.P.: Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6). J. Electron. Mater. 39(9), 2165 (2010).
5.Gelbstein, Y., Dado, B., Yehuda, O.B., Sadia, Y., Dashevsky, Z., and Dariel, M.P.: High thermoelectric figure of merit and nanostructuring in bulk p-type Gex(SnyPb1-y)1-xTe alloys following a spinodal decomposition reaction. Chem. Mater. 22, 1054 (2010).
6.Dresselhaus, M.S., Chen, G., Ren, Z.F., Dresselhaus, G., Henry, A., and Fleurial, J.-P.: New composite thermoelectric materials for energy harvesting applications. JOM 61(4), 86 (2009).
7.Peranio, N., Eibl, O., and Nurnus, J.: Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J. Appl. Phys. 100, 114306 (2006).
8.Glazov, V.M. and Yatmanov, Yu.V.: Thermoelectric properties of semiconducting solid solutions Bi2Te2.4Se0.6 and Bi0.52Sb1.48Te3 prepared by ultrafast cooling melts. Moscow Institute of Electronics. Translated from Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy, Vol. 22, No. 1, pp. 36–40, January, 1986. Original 23 (1984) (article submitted).
9.Koukharenkou, E., Fretya, N., Shepelevich, V.G., and Tedenac, C.: Electrical properties of Bi2-xSbxTe3 materials obtained by ultrarapid quenching. J. Alloy. Comp. 327, 1 (2001).
10.Ebling, D.G., Jacquot, A., Böttner, H., Kirste, L., and Schmidt, J.: Influence of group IV-Te alloing on nanocompiste structure and thermoelectric properties of Bi2Te3 compounds. J. Electron. Mater. 38(7), 1450 (2009).
11.Jiang, J., Chen, L., Bai, S., Yao, Q., and Wang, Q.: Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater. Sci. Eng., B 117, 334 (2005).
12.Lim, C.H., Kim, K.T., Kim, Y.H., Lee, Y.S., Lee, C.H., and Lee, C.H.: Improvement of the figure-of-merit by formation of crystallographic texture in Bi2Te3-based thermoelectric compounds. J. Electroceram. 17, 894 (2006).
13.Chen, Z.-C., Suzuki, K., Miura, S., Nishimura, K., and Ikeda, K.: Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3 thermoelectric compound. Mater. Sci. Eng., A 500, 70 (2009).
14.Ma, Y., Hao, Q., Poudel, B., Lan, Y., Yu, B., Wang, D., Chen, G., and Ren, Z.: Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 8(8), 2580 (2008).
15.Xie, W., He, J., Kang, H.J., Tang, X., Zhu, S., Laver, M., Wang, S., Copley, J.R.D., Brown, C.M., Zhang, Q., and Tritt, T.M.: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).
16.Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T.M.: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).
17.Peranio, N. and Eibl, O.: Quantitative EDX microanalysis of Bi2Te3 in the TEM. Phys. Status Solidi A 204(10), 3243 (2007).
18.Stadelmann, P.: EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).
19.Thomas, J. and Gemming, T.: ELDISCA C#—a new version of the program for identifying electron diffraction patterns, in EMC 2008, Vol. I, (Aachen, 2008), pp. 231232.
20.Stasova, M.M. and Abrikosov, N.K.: The radiographical analysis of the solid solution in system Bi-Sb-Te. Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy. 6, 1090 (1970).
21.Jacquot, A., Pernau, H.-F., König, J., Nussel, U., Bartel, M., Ebling, D., and Jaegle, M.: Measurement uncertainties in thermoelectric materials, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, P1.
22.Lange, P.W.: Ein Vergleich zwischen Bi2Ti3 und Bi2Te2S. Naturwissenschaften. 27, 133 (1939).
23.Peranio, N. and Eibl, O.: Structural modulations in Bi2Te3. J. Appl. Phys. 103, 024314 (2008).
24.Xie, W.J., Tang, X.F., Chen, G., Jin, Q., and Zhang, Q.J.: Nanostructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compound prepared by melt spinning technique, in Proceedings of the 26th International Conference on Thermoelectrics, Jeju Island, Korea, 2007, pp. 2326
25.Goldsmid, H.J.: Thermoelectric Refrigeration (Plenum Press, New York, 1964).
26.Lundstrom, M.: Fundamentals of Carrier Transport (Cambridge University Press, Cambridge, UK, 2000).
27.Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., and Eastman, L.F.: The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73(6), 821 (1998).
28.Jacquot, A., König, J., Bayer, B., Ebling, D., Schmidt, J., and Jaegle, M.: Coupled theoretical and experimental investigation of the role of impurity level and concentration in Bi2Te3 and PbTe-based materials at high temperature, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, pp. 112.
29.Ridley, B.K.: Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference. J. Phys. C Solid State Phys. 10, 1589 (1977).
30.Chazalviel, J.-N.: Coulomb Screening by Mobile Charges: Application to Materials Science, Chemistry and Biology (Birkhäuser, Basel, 1998).
31.Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).
32.Kaiblinger-Grujin, G., Kosina, H., Köpf, Ch., and Selberherr, S.: Influence of dopant spiecies on electron mobility in heavily doped semiconductors. Mater. Sci. Forum 258263, 939 (1997).
33.Jacquot, A., Farag, N., Jaegle, M., Bobeth, M., Schmidt, J., Ebling, D., and Böttner, H.: Thermoelectric properties as a function of the electronic band structure and the microstructure of textured materials. J. Electron. Mater. 39(9), 1861 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: