Skip to main content Accessibility help

Biomineralization in human pancreas: A combined infrared-spectroscopy, scanning electron microscopy, x-ray Rietveld analysis, and thermogravimetric study

  • Samiran Pramanik (a1), Soumen Ghosh (a2), Arkaprovo Roy (a3) and Alok Kumar Mukherjee (a4)


Structural characterization, quantitative phase analysis, and morphological behavior of biomineralized deposits in human pancreas [pancreatic stones (PSs)] have been carried out using infrared (IR)-spectroscopy, scanning electron microscopy (SEM), powder x-ray diffraction, and thermogravimetry - differential scanning calorimetry (TG–DSC). The fourier transform infrared (FT-IR) spectra indicated that the primary composition of PSs was calcium carbonate. An x-ray powder diffraction phase quantification using the Rietveld method revealed that five of the pancreatic calculi were composed exclusively of calcite (CAL) and the remaining four contained small amounts of vaterite and aragonite in addition to the CAL phase. The crystallite size of CAL in the PSs study varied between 104(6) and 181(2) nm. The SEM images of pancreatic calculi showed a variety of crystal morphologies for biogenic CAL crystallites such as, thin plates, spherulites, prisms, and cylindrical laths. Thermogravimetric analysis of PS1 reveals that biogenic CAL is stable up to 910 K, above which temperature CAL transforms into calcium oxide.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Colin Freeman



Hide All
1. Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001).
2. Meldrum, F.C.: Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 48, 187 (2003).
3. Skinner, H.C.W. and Ehrlich, H.: Biomineralization. In Treatise on Geochemistry. Biochemistry, 2nd ed., Turekin, K.K. and Holland, H.D. eds.; Elsevier Science: Amsterdam, 2014; pp. 105162.
4. Bazin, D., Daudon, M., Combes, C., and Rey, C.: Characterization and some physicochemical aspects of pathological microcalcifications. Chem. Rev. 112, 5092 (2012).
5. Stinton, L.M. and Shaffer, E.A.: Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 6, 172 (2012).
6. Pak, C.Y.C.: Medical stone management: 35 years of advances. J. Urol. 180, 813 (2008).
7. Ehrlich, H.: Biological Materials of Marine Origin. Vertebrates. (Monograph) (Springer Verlag: Dordrecht, 2015); p. 594.
8. Taylor, E.N. and Curhan, G.C.: Diet and fluid prescription in stone disease. Kidney Int. 70, 835 (2006).
9. Guinerbretiere, J.M., Menet, E., Tardivon, A., Cherel, P., and Vanel, D.: Normal and pathological breast, the histology basis. Eur. J. Radiol. 54, 6 (2005).
10. Gracia-Gracia, S., Millan-Rodriguez, F., Rousaud-Baron, F., Montanes-Bermudez, R., Angerri-Feu, O., Sanchez-Martin, F., Villavicencio-Mavrich, H., and Oliver-Samper, A.: Why and how we must analyze urinary calculi. Actas. Urol. Esp. 35, 354 (2011).
11. Mukherjee, A.K.: Human kidney stone analysis using X-ray powder diffraction. J. Indian Inst. Sci. 94, 35 (2014).
12. Ghosh, S., Basu, S., Chakraborty, S., and Mukherjee, A.K.: Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J. Appl. Crystallogr. 42, 629 (2009).
13. Ghosh, S., Bhattacharya, A., Chatterjee, P., and Mukherjee, A.K.: Structural and microstructural characterization of seven human kidney stones using FTIR spectroscopy, SEM, thermal study and X-ray Rietveld analysis. Z. Kristallogr. 229, 451 (2014).
14. Sperrin, M.W. and Rogers, K.: The architecture and composition of uroliths. Br. J. Urol. 82, 781 (1998).
15. Daudon, M., Bazin, D., André, G., Jungers, P., Cousson, A., Chevallier, P., Véron, E., and Matzen, G.: Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J. Appl. Crystallogr. 42, 109 (2009).
16. Qiao, T., Ma, R.H., Luo, X.B., Luo, Z.L., Zheng, P.M., and Yang, L.Q.: A microstructural study of gallbladder stones using scanning electron microscopy. Microsc. Res. Tech. 76, 443 (2013).
17. Yu, J.K., Pan, H., Huang, S.M., Huang, N.L., Yao, C.C., Hsiao, K.M., and Wu, C.W.: Calcium-content of different compositions gallstones and pathogenesis of calcium carbonate gallstones. Asian J. Surg. 36, 26 (2013).
18. Narasimhulu, K.V., Gopal, N.O., Rao, J.L., Vijayalakshmi, N., Natarajan, S., Surendran, R., and Mohan, V.: Structural studies of the biomineralized species of calcified pancreatic stones in patients suffering from chronic pancreatitis. Biophys. Chem. 114, 137 (2005).
19. Schultz, A.C., Moore, P.B., Geevarghese, P.J., and Pitchumoni, C.S.: X-ray diffraction studies of pancreatic calculi associated with nutritional pancreatitis. Dig. Dis. Sci. 31, 476 (1986).
20. Bimmler, D., Graf, R., Scheele, G.A., and Frick, T.W.: Pancreatic stone protein (lithostathine), a physiologically relevant pancreatic calcium carbonate crystal inhibitor? J. Biol. Chem. 272, 3073 (1997).
21. Beger, H.G., Warshaw, A.L., Carr-Locke, D.L., Neoptolemos, J.P., Russell, C., and Sarr, M.G.: The Pancreas (Blackwell Scientific Publications, London, 1998).
22. Rodgers, A.L. and Spector, M.: Pancreatic calculi containing brushite: Ultrastructure and pathogenesis. Calcif. Tissue Int. 39, 342 (1986).
23. Hesse, A., Kruse, R., Geilenkeuser, W.J., and Schmidt, M.: Quality control in urinary stone analysis: Results of 44 ring trials (1980–2001). Clin. Chem. Lab. Med. 43, 298 (2005).
24. Estepa, L. and Daudon, M.: Contribution of fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 3, 347 (1997).
25. Malet, P.F., Dabezies, M.A., Huang, G.H., Long, W.B., Gadacz, T.R., and Soloway, R.D.: Quantitative infrared spectroscopy of common bile duct gallstones. Gastroenterology 94, 1217 (1988).
26. Rietveld, H.M.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967).
27. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structure. J. Appl. Crystallogr. 2, 65 (1969).
28. Young, R.A.: The Rietveld Method (IUCr/Oxford University Press, Oxford, 1996).
29. Orlando, M.T.D., Kuplich, L., de Souza, D.O., Belich, H., Depianti, J.B., Orlando, C.G.P., Medeiros, F.F., da Cruz, P.C.M., Martinez, L.G., Corrêa, H.P.S., and Ortiz, R.: Study of calcium oxalate monohydrate of kidney stones by X-ray diffraction. Powder Diffr. 23, 59 (2008).
30. Lutterotti, L.: MAUD. Version 2.33. 2010∼maud.
31. Maslen, E.N., Streltsov, V.A., and Streltsova, N.R.: X-ray study of the electron density in calcite, CaCO3 . Acta Crystallogr., Sect. B 49, 636 (1993).
32. Caspi, E.N., Pokroy, B., Lee, P.L., Quintana, J.P., and Zolotoyabko, E.: On the structure of aragonite. Acta Crystallogr., Sect. B 61, 129 (2005).
33. Bail, A.L., Ouhenia, S., and Chateigner, D.: Microtwinning hypothesis for a more ordered vaterite model. Powder Diffr. 26, 16 (2011).
34. Sitepu, H.: Assessment of preferred orientation with neutron powder diffraction data. J. Appl. Cryst. 35, 274 (2002).
35. Lutterotti, L., Scardi, P., and Maistrelli, P.: LSI—A computer program for simultaneous refinement of material structure and microstructure. J. Appl. Crystallogr. 25, 459 (1992).
36. Adler, H.H. and Kerr, P.F.: Infrared study of aragonite and calcite. Am. Mineral. 47, 700 (1962).
37. Al-Hosney, H.A. and Grassian, V.H.: Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study. Phys. Chem. Chem. Phys. 7, 1266 (2005).
38. Montalto, G., Multigner, L., Sarles, H., and De Caro, A.: Organic matrix of pancreatic stones associated with nutritional pancreatitis. Pancreas 3, 263 (1988).
39. Jin, C.X., Naruse, S., Kitagawa, M., Ishiguro, H., Kondo, T., Hayakawa, S., and Hayakawa, T.: Pancreatic stone protein of pancreatic calculi in chronic calcified pancreatitis in man. J. Pancreas 3, 54 (2002).
40. Pokroy, B., Fitch, A.N., and Zolotoyabko, E.: The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363 (2006).
41. Zolotoyabko, E. and Pokroy, B.: Biomineralization of calcium carbonate: Structural aspects. CrystEngComm 9, 1156 (2007).
42. Zolotoyabko, E., Caspi, E.N., Fieramosca, J.S., Von Dreele, R.B., Marin, F., Mor, G., Addadi, L., Weiner, S., and Politi, Y.: Differences between bond lengths in biogenic and geological calcite. Cryst. Growth Des. 10, 1207 (2010).
43. Maslen, E.N., Streltsov, V.A., and Streltsova, N.R.: Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3 . Acta Crystallogr., Sect. B 51, 929 (1995).
44. Addadi, L. and Weiner, S.: Control and design principles in biological mineralization. Angew. Chem., Int. Ed. 31, 153 (1992).
45. Checa, A.G., Esteban-Delgado, F.J., Ramirez-Rico, J., and Rodriquez-Navarro, A.B.: Crystallographic reorganization of the calcitic prismatic layer of oysters. J. Struct. Biol. 167, 261 (2009).
46. Dauphin, Y.: Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: Pinna nobilis and pinctada margaritifera. J. Biol. Chem. 278, 15168 (2003).
47. Singh, N.B. and Singh, N.P.: Formation of CaO from thermal decomposition of calcium carbonate in the presence of carboxylic acids. J. Therm. Anal. Calorim. 89, 159 (2007).


Biomineralization in human pancreas: A combined infrared-spectroscopy, scanning electron microscopy, x-ray Rietveld analysis, and thermogravimetric study

  • Samiran Pramanik (a1), Soumen Ghosh (a2), Arkaprovo Roy (a3) and Alok Kumar Mukherjee (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed