Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T08:36:55.093Z Has data issue: false hasContentIssue false

Batteries and charge storage devices based on electronically conducting polymers

Published online by Cambridge University Press:  31 January 2011

Theodore O. Poehler*
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
*
b)Address all correspondence to this author. e-mail: top@jhu.edu
Get access

Abstract

Strong interest in energy generation and storage has yielded excellent progress on organic based solar cells, and there is also a strong desire for equivalent advancement in polymer-based charge storage devices such as batteries and super-capacitors. Despite extensive research on electronically conducting polymers including polypyrrole, polythiophene, and polyaniline, limitations to the maximum doping density and chemical stability had been considered a significant restriction on the development of polymer batteries. Recent work appears to show a meaningful increase in the upper bound of the maximum density from 0.5 to 1.0 electrons per monomer depending on the structure, processing, and ionic species used in charging and discharging of the polymers. Several recent examples have also implied that more stable, reversible charge-discharge cycling is being observed in n-doped polymers. These observations suggest that the performance metrics of this class of electronically conducting polymer may ultimately reach the levels required for practical battery applications. Further efforts are essential to perfect practical large-scale electrode fabrication to move toward greater compatibility in the methods used for solar cells and those used in producing batteries. A better understanding must also be developed to elucidate the effects of molecular structure and polymer architecture on these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DOE Basic research needs for electrical energy storage Bethesda, MD April 2–4 2007 Available at: http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf.Google Scholar
2.Li, G., Shrotriya, V., Huang, J.S., Yao, Y., Moriarty, T., Emery, K., Yang, Y.High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, (11)864 (2005)CrossRefGoogle Scholar
3.Gratzel, M.Dye-sensitized solid-state heterojunction solar cells. MRS Bull. 30, (1)23 (2005)CrossRefGoogle Scholar
4.Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.Polymer photovoltaic cells—Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, (5243)1789 (1995)CrossRefGoogle Scholar
5.Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.S., Ree, M.A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater. 5, (3)197 (2006)CrossRefGoogle Scholar
6.Brabec, C.J., Durrant, J.R.Solution-processed organic solar cells. MRS Bull. 33, (7)670 (2008)CrossRefGoogle Scholar
7.Wu, Y. Solarmer breaks organic solar PV cell conversion efficiency record www.PV-tech.org 2009Google Scholar
8.Brabec, C.J., Padinger, F., Hummelen, J.C., Janssen, R.A.J., Sariciftci, N.S.Realization of large area flexible fullerene—Conjugated polymer photocells: A route to plastic solar cells. Synth. Met. 102, (1–3)861 (1999)CrossRefGoogle Scholar
9.Shaheen, S.E., Radspinner, R., Peyghambarian, N., Jabbour, G.E.Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, (18)2996 (2001)CrossRefGoogle Scholar
10.Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., Holmes, A.B.Efficient photodiodes from interpenetrating polymer networks. Nature 376, (6540)498 (1995)CrossRefGoogle Scholar
11.Cai, W.Z., Gong, X., Cao, Y.Polymer solar cells: Recent development and possible routes for improvement in the performance. Sol. Energy Mater. Sol. Cells 94, (2)114 (2010)CrossRefGoogle Scholar
13.Shirakawa, H., Louis, E.J., Macdiarmid, A.G., Chiang, C.K., Heeger, A.J.Synthesis of electrically conducting organic polymers—Halogen derivatives of polyacetylene, (CH)X. J. Chem. Soc. Chem. Commun. 578 (1977)CrossRefGoogle Scholar
14.Roncali, J.Electrogenerated functional conjugated polymers as advanced electrode materials. J. Mater. Chem. 9, (9)1875 (1999)CrossRefGoogle Scholar
15.Gofer, Y., Sarker, H., Killian, J.G., Giaccai, J., Poehler, T.O., Searson, P.C.Fabrication of an all-polymer battery based on derivatized polythiophenes. Biomed. Instrum. Technol. 32, 33 (1998)Google ScholarPubMed
16.Furukawa, N., Nishio, K.Lithium batteries with polymer electrodes edited by B. Scrosati (Chapman and Hall, London 1993)151181Google Scholar
17.Conway, B.E.Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc. 138, (6)1539 (1991)CrossRefGoogle Scholar
18.Lee, H.Y., Goodenough, J.B.Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, (1)220 (1999)CrossRefGoogle Scholar
19.Rudge, A., Raistrick, I., Gottesfeld, S., Ferraris, P.A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 39, 273 (1994)CrossRefGoogle Scholar
20.Mastragostino, M., Paraventi, R., Zanelli, A.Supercapacitors based on composite polymer electrodes. J. Electrochem. Soc. 147, (9)3167 (2000)CrossRefGoogle Scholar
21.Pandolfo, A.G., Hollenkamp, A.F.Carbon properties and their role in supercapacitors. J. Power Sources 157, (1)11 (2006)CrossRefGoogle Scholar
22.Gofer, Y., Sarker, H., Killian, J.G., Poehler, T.O., Searson, P.C.The electrochemistry of fluorine-substituted polyphenylthiophenes for charge storage applications. J. Electroanal. Chem. 443, 103 (1998)CrossRefGoogle Scholar
23.Zheng, Q., Jung, B.J., Sun, J., Katz, H.E.Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity. J. Am. Chem. Soc. 132, (15)5394 (2010)CrossRefGoogle ScholarPubMed
24.Sarker, H., Gofer, Y., Killian, J.G., Poehler, T.O., Searson, P.C.Synthesis and characterization of fluoro-substituted polyphenylthiophenes for charge storage applications. Synth. Met. 88, 179 (1997)CrossRefGoogle Scholar
25.Brédas, J.L., Street, G.B.Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309 (1985)CrossRefGoogle Scholar
26.Yang, R., Smyrl, W.H., Evans, D.F., Hendrickson, W.A.Evolution of polypyrrole band-structure—A scanning tunneling spectroscopy study. J. Phys. Chem. 96, (3)1428 (1992)CrossRefGoogle Scholar
27.Nigrey, P.J., Macinnes, D., Nairns, D.P., Macdiarmid, A.G., Heeger, A.J.Lightweight rechargeable storage batteries using polyacetylene, (CH)X as the cathode-active material. J. Electrochem. Soc. 128, (8)1651 (1981)CrossRefGoogle Scholar
28.Macinnes, D., Druy, M.A., Nigrey, P.J., Nairns, D.P., Macdiarmid, A.G., Heeger, A.J.Organic batteries—Reversible n-type and p-type electrochemical doping of polyacetylene, (CH)X. J. Chem. Soc. Chem. Commun. 317 (1981)CrossRefGoogle Scholar
29.Chiang, C.K.An all-polymeric solid-state battery. Polymer 22, (11)1454 (1981)CrossRefGoogle Scholar
30.Nagatomo, T., Honma, T., Yamamoto, C., Negishi, K., Omoto, O.A long-lasting polyacetylene battery with high-energy density. Jpn. J. Appl. Phys. Part 1 22, (5)L275 (1983)CrossRefGoogle Scholar
31.Macdiarmid, A.G., Yang, L.S., Huang, W.S., Humphrey, B.D.Polyaniline-electrochemistry and application to rechargeable batteries. Synth. Met. 18, (1–3)393 (1987)CrossRefGoogle Scholar
32.Taguchi, S., Tanaka, T.Fibrous polyaniline as positive active material in lithium secondary batteries. J. Power Sources 20, (3–4)249 (1987)CrossRefGoogle Scholar
33.Goto, F., Abe, K., Okabayashi, K., Yoshida, T., Morimoto, H.The polyaniline lithium battery. J. Power Sources 20, (3–4)243 (1987)CrossRefGoogle Scholar
34.Panero, S., Prosperi, P., Bonino, F., Scrosati, B., Corradini, A., Mastragostino, M.Characteristics of electrochemically synthesized polymer electrodes in lithium cells. 3. Polypyrrole. Electrochim. Acta 32, (7)1007 (1987)CrossRefGoogle Scholar
35.Bittihn, R., Ely, G., Woeffler, F.Polypyrrole as an electrode material for secondary lithium cells. Makromol. Chem. 8, 51 (1987)CrossRefGoogle Scholar
36.Levi, M.D., Gofer, Y., Aurbach, D.A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes. Polym. Adv. Technol. 13, (10–12)697 (2002)CrossRefGoogle Scholar
37.Song, H.K., Palmore, G.T.R.Redox-active polypyrrole: Toward polymer-based batteries. Adv. Mater. 18, (13)1764 (2006)CrossRefGoogle Scholar
38.Yamamoto, T., Zama, M., Hishinuma, M., Yamamoto, A.Lithium secondary cells using LiX (X = ClO4, BF4) as electrolyte and poly(2,5-pyrrolylene) and poly(2,5-thienylene) as materials for positive electrodes. J. Appl. Electrochem. 17, 607 (1987)CrossRefGoogle Scholar
39.Panero, S., Prosperi, P., Zane, D., Scrosati, B.Properties of electrochemically synthesized polymer electrodes. 7. Kinetics of poly-3-methylthiophene in lithium cells. J. Appl. Electrochem. 22, (3)189 (1992)CrossRefGoogle Scholar
40.Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S.Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89 (1994)CrossRefGoogle Scholar
41.Sato, M-A., Tanaka, S., Kaeriyama, K.Electrochemical preparation of highly anode-active poly(3-phenylthiophene). J. Chem. Soc. Chem. Commun. 1725 (1987)CrossRefGoogle Scholar
42.Ferraris, J.P., Eissa, M.M., Brotherston, I.D., Loveday, D.C.Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications. Chem. Mater. 10, (11)3528 (1998)CrossRefGoogle Scholar
43.Sarker, H., Ong, I., Sarker, S., Searson, P.C., Poehler, T.O.Design and synthesis of a series of substituted polyphenylene-thiophenes. Synth. Met. 108, (1)33 (2000)CrossRefGoogle Scholar
44.Sarker, H., Gofer, Y., Killian, J.G., Poehler, T.O., Searson, P.C.Synthesis and characterization of a series of fluorine-substituted phenylene-thienyl polymers for battery applications. Synth. Met. 97, 1 (1998)CrossRefGoogle Scholar
45.Gofer, Y., Sarker, H., Killian, J.G., Poehler, T.O., Searson, P.C.An all-polymer charge storage device. Appl. Phys. Lett. 71, 1582 (1997)CrossRefGoogle Scholar
46.Usta, H., Risko, C., Wang, Z.M., Huang, H., Deliomeroglu, M.K., Zhukhovitskiy, A., Facchetti, A., Marks, T.J.Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131, (15)5586 (2009)CrossRefGoogle ScholarPubMed
47.Levi, M.D., Fisyuk, A.S., Demadrille, R., Markevich, E., Gofer, Y., Aurbach, D., Pron, A.Unusually high stability of a poly(alkylquaterthiophene-alt-oxadiazole) conjugated copolymer in its n and p-doped states. Chem. Commun. 3299 (2006)CrossRefGoogle Scholar
48.Wang, C.Y., Tsekouras, G., Wagner, P., Gambhir, S., Too, C.O., Officer, D., Wallace, G.G.Functionalised polyterthiophenes as anode materials. Synth. Met. 160, (1–2)76 (2009)CrossRefGoogle Scholar
49.Groenendaal, B.L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R.Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, (7)481 (2000)3.0.CO;2-C>CrossRefGoogle Scholar
50.Abraham, K.M., Alamgir, M.Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries. Chem. Mater. 3, (2)339 (1991)CrossRefGoogle Scholar
51.Abraham, K.M., Alamgir, M.Li+-conductive solid polymer electrolytes with liquid-like conductivity. J. Electrochem. Soc. 1990, (137)1657 (1990)CrossRefGoogle Scholar
52.Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plee, D., Mastragostino, M., Passerini, S.High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, (2)922 (2007)CrossRefGoogle Scholar
53.Matsuda, Y., Morita, M., Ishikawa, M., Ihara, M.New electric double-layer capacitors using polymer solid electrolytes containing tetraalkylammonium salts. J. Electrochem. Soc. 140, (7)L109 (1993)CrossRefGoogle Scholar
54.Osaka, T., Liu, X.J., Nojima, M., Momma, T.An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J. Electrochem. Soc. 146, (5)1724 (1999)CrossRefGoogle Scholar
55.Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H., Morita, M.New electric double layer capacitor with polymer hydrogel electrolyte. Electrochem. Solid-State Lett. 6, (2)A37 (2003)CrossRefGoogle Scholar
56.Ishikawa, M., Kishino, T., Katada, N., Morita, M.Performance of electric double layer capacitors with polymer gel electrolytes. New Mater. Batteries and Fuel Cells 575, 423 (2000)Google Scholar
57.Kim, B.J., Oh, S.G., Han, M.G., Im, S.S.Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth. Met. 122, (2)297 (2001)CrossRefGoogle Scholar
58.Tirumala, V.R., Caneba, G.T., Dar, Y., Wang, H.H., Mancini, D.C.Nanoparticles from a controlled polymerization process. Adv. Polym. Technol. 22, (2)126 (2003)CrossRefGoogle Scholar
59.Segawa, H., Shimidzu, T., Honda, K.A novel photo-sensitized polymerization of pyrrole. J. Chem. Soc. Chem. Commun. 132 (1989)CrossRefGoogle Scholar
60.Zhou, L., Poehler, T.O., Searson, P.C. in preparation. (2009)Google Scholar
61.Coffey, B., Madsen, P.V., Poehler, T.O., Searson, P.C.High charge density conducting polymer/graphite fiber composite electrodes for battery applications. J. Electrochem. Soc. 142, (2)321 (1995)CrossRefGoogle Scholar