Skip to main content Accessibility help
×
Home

Band structure and transport studies of half Heusler compound DyPdBi: An efficient thermoelectric material

  • S. Krishnaveni (a1), M. Sundareswari (a1), P.C. Deshmukh (a2), S.R. Valluri (a3) and Ken Roberts (a4)...

Abstract

The discovery of Heusler alloys has revolutionized the research field of intermetallics due to the ease with which one can derive potential candidates for multifunctional applications. During recent years, many half Heusler alloys have been investigated for their thermoelectric properties. The f-electron-based rare-earth ternary half Heusler compound DyPdBi has its f energy levels located close to the Fermi energy level. Other research efforts have emphasized that such materials have good thermoelectric capabilities. We have explored using first principles the electronic band structure of DyPdBi by use of different exchange correlation potentials in the density functional theoretical framework. Transport coefficients that arise in the study of thermoelectric properties of DyPdBi have been calculated and have illustrated its potential as an efficient thermoelectric material. Both the theoretically estimated Seebeck coefficient and the power factor agree well with the available experimental results. Our calculations illustrate that it is essential to include spin–orbit coupling in these models of f-electron half Heusler materials.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: sarathyveni@gmail.com

References

Hide All
1. Rajagopalan, M. and Sundareswari, M.: Ab initio study of the electronic structure of rhodium based intermetallic compounds under pressure. J. Alloys Compd. 379, 815 (2004). doi: 10.1016/j.jallcom.2004.02.011.
2. Heusler, Fr.: Über die Synthese ferromagnetischer Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219223 (1903).
3. Kübler, J., Williams, A.R., and Sommers, C.B.: Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28, 17451755 (1983).
4. Raphael, M.P., Ravel, B., Huang, Q., Willard, M.A., Cheng, S.F., Das, B.N., Stroud, R.M., Bussmann, K.M., Claassen, J.H., and Harris, V.G.: Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B 66, 104429 (2002).
5. Cheng, S.F., Nadgorny, B., Bussmann, K., Carpenter, E.E., Das, B.N., Trotter, G., Raphael, M.P., and Harris, V.G.: Growth and magnetic properties of single crystal Co2MnX (X = Si,Ge) Heusler alloys. IEEE Trans. Magn. 37, 21762178 (2001).
6. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H-J., and Morais, J.: Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72, 184434 (2005).
7. Galanakis, I., Mavropoulos, Ph., and Dederichs, P.H.: Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D: Appl. Phys. 39, 765775 (2006).
8. Kulkova, S.E., Eremeev, S.V., Kakeshita, T., Kulkov, S.S., and Ruden-ski, G.E.: The electronic structure and magnetic properties of full and half-Heusler alloys. Mater. Trans. 47, 599606 (2006).
9. Nanda, B.R.K. and Dasgupta, I.: Electronic structure and magnetism in half-Heusler compounds. J. Phys.: Condens. Matter 15, 73077323 (2003). doi: 10.1088/0953-8984/15/43/014.
10. Nanda, B.R.K. and Dasgupta, I.: Electronic structure and magnetism in doped semiconducting half-Heusler compounds. J. Phys.: Condens. Matter 17, 50375048 (2005). doi: 10.1088/0953-8984/17/33/008.
11. Muta, H., Kanemitsu, T., Kurosaki, K., and Yamanaka, S.: Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 47, 14531457 (2006).
12. Larson, P., Mahanti, S.D., Sportouch, S., and Kanatzidis, M.G.: Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials. Phys. Rev. B 59, 660668 (1999).
13. Jesus, C.B.R., Rosa, P.F.S., Garitezi, T.M., Lesseux, G.G., Urbano, R.R., Reittori, C., and Pagliuso, P.G.: Electron spin resonance of the half-Heusler antiferromagnetic GdPdBi. Solid State Commun. 177, 9597 (2014).
14. Downie, R.A., MacLaren, D.A., and Bos, J-W.G.: Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. A 2, 61076114 (2014). doi: 10.1039/c3ta13955g.
15. Gofryk, K., Kaczorowski, D., Plackowski, T., Leithe-Jasper, A., and Grin, Yu.: Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: Prospective systems for topological quantum phenomena. Phys. Rev. B 84, 035208 (2011). doi: 10.1103/Phys-RevB.84.035208. ArXiv: 1106.3763.
16. Nakajima, Y., Hu, R., Kirshenbaum, K., Hughes, A., Syers, P., Wang, X., Wang, R., Saha, S.R., Pratt, D., Lynn, J.W., and Paglione, J.: Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1, e1500242 (2015). doi: 10.1126/sciadv.1500242. ArXiv: 1501.04096.
17. Al-Sawai, W., Lin, H., Markiewiez, R.S., Wray, L.A., Xia, Y., Xu, S-Y., Hasan, Z., and Bansil, A.: Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 82, 125208 (2010).
18. Bose, S.K., Kudrnovsky, J., Drchal, V., and Turek, I.: Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. Phys. Rev. B 84, 174422 (2011). doi: 10.1103/PhysRevB.84.174422. ArXiv: 1010.3025.
19. Pan, Y., Nikitin, A.M., Bay, T.V., Huang, Y.K., Paulsen, C., Yan, B.H., and de Visser, A.: Superconductivity and magnetic order in the non-centrosymmetric half-Heusler compound ErPdBi. Europhys. Lett. 104, 27001 (2013).
20. Galanakis, I., Dederichs, P.H., and Papanikolaou, N.: Origin and properties of the gap in the half-ferrormagetic Heusler alloys. Phys. Rev. B 66, 134428 (2002).
21. Gillessen, M.: Massgeschneidertes und Analytik-Ersatz über die quantenchemischen Untersuchungen einiger ternӓrer intermet-allisher Verbindungen, Dissertation, Aachen, 2009. Available at http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3122/pdf/Gillessens_Michael.pdf.
22. Gillessen, M. and Dronskowski, R.: A Combinatorial study of full Heusler alloys by first-principles computational methods. J. Comput. Chem. 30, 12901299 (2009).
23. Gillessen, M. and Dronskowski, R.: A Combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comput. Chem. 31, 612619 (2010).
24. Krishnaveni, S., Sundareswari, M., and Rajagopalan, M.: Prediction of electronic and magnetic properties of full Heusler alloy Ir2CrAl. IOSR J. Appl. Phys. 7, 5255 (2015). doi: 10.9790/4861-07135255.
25. Müchler, L., Casper, F., Yan, B., Chadov, S., and Felser, C.: Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 7, 91100 (2013). doi: 10.1002/pssr.201206411.
26. Mahan, G.D. and Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 74367439 (1996).
27. Madsen, G.K.H. and Singh, D.J.: BoltzTraP: A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 6771 (2006). doi: 10.1016/j.cpc.2006.03.007. ArXiv: cond-mat/0602203.
28. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the Desity-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Let. 100, 136406 (2008).
29. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Wien, 2001). ISBN 3-9501031-1-2. Freely available at http://www.wien2k.at/reg_user/textbooks/usersguide.pdf.
30. Cottenier, S.: Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction, 2002–2013, 2nd ed. (KU Leuven, Belgium, 2015). ISBN 978-90-807215-1-7. Freely available at http://www.wien2k.at/reg user/textbooks.
31. Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., and Yang, J.: Evaluation of half-Heusler compounds as thermoelectric materials based on the calcu-lated electrical transport properties. Adv. Funct. Mater. 18, 28802888 (2008). doi: 10.1002/adfm.200701369.
32. Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Reflectance and magneto-optical Kerr rotation in DyP. Indian J. Pure Appl. Phys. 45, 6668 (2007).
33. Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I.J. Phys. Rev. B 67, 943954 (1991).
34. Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Optical properties of heavy rare earth metals (Gd-Lu). Solid State Commun. 140, 125129 (2006).
35. Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Optical and magneto-optical properties of gadolinium. J. Appl. Phys. 101, 033523 (2007).
36. Saini, S.M., Singh, N., Nautiyal, T., and Auluck, S.: Comparative study of optical and magneto-optical properties of GdFe2 and GdCo2 . J. Phys.: Condens. Matter 19, 176203 (2007). doi: 10.1088/0953-8984/19/17/176203.
37. Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic structure and optical properties of rare earth sesquioxides (R2O3, R = La, Pr, and Nd). J. Appl. Phys. 100, 083525 (2006). doi: 10.1063/1.2353267.
38. Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Theoretical investigation of the optical and magneto-optical properties of EuX (X = S, Se, and Te). Phys. B 388, 99106 (2007).
39. Singh, N., Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic structure and optical properties of rare earth hexaborides RB6 (R = La, Ce, Pr, Nd, Sm, Eu, Gd). J. Phys.: Condens. Matter 19, 346226 (2007). doi: 10.1088/0953-8984/19/34/346226.
40. Saini, S.M., Nautiyal, T., and Auluck, S.: Electronic and optical properties of rare earth trifluorides RF3 (R = La, Ce, Pr, Nd, Gd and Dy). Mater. Chem. Phys. 129, 349355 (2011). doi: 10.1016/j.matchemphys.2011.04.024.
41. Rameshe, B., Rajagopalan, M., and Palanivel, B.: Electronic structure, structural phase stability, optical and thermoelectric properties of Sr2AlM0O6 (M0 = Nb and Ta) from first principles calculations. Comput. Condens. Matter 4, 1322 (2015). doi: 10.1016/j.cocom.2015.03.003.
42. Singh, D.J.: Doping dependent thermopower of PdTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010). doi: 10.1103/PhysRevB.81.195217.
43. Nishino, Y.: Development of thermoelectric materials based on Fe2VAl Heusler compound for energy harvesting applications. Inst. Phys. Conf. Ser.: Mater. Sci. Eng. 18, 142001 (2011). doi: 10.1088/1757-899X/18/14/142001.
44. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antinomy telluride bulk alloys. Science 320, 634638 (2008). doi: 10.1126/science.1156446.
45. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 10431053. doi: 10.1002/adma.200600527.
46. Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 1272712731 (1993).

Keywords

Band structure and transport studies of half Heusler compound DyPdBi: An efficient thermoelectric material

  • S. Krishnaveni (a1), M. Sundareswari (a1), P.C. Deshmukh (a2), S.R. Valluri (a3) and Ken Roberts (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed