Skip to main content Accessibility help
×
Home

Austenite grain growth in alumina-forming austenitic steel

  • Qiuzhi Gao (a1), Fu Qu (a1), Hailian Zhang (a2) and Qiang Huo (a1)

Abstract

Microstructures and austenite grain growth behavior of the alumina-forming austenitic (AFA) steel subjected to normalizing and annealing at various temperatures were investigated. A modified kinetic model of austenite grain growth was constructed based on consideration of the heating history. Abnormal growth of austenite grain occurs when the temperature is increased to 1473 K, and some special large particles of the precipitates located at grain boundaries form when the sample is normalized at the temperature of 1523 K. Both NbC and NiAl precipitates are identified using routine x-ray diffraction. The fitted data based on the kinetic model used and the consideration of the heating history is in agreement with the changes in the austenite grain growth in the AFA steel even when there is abnormal grain growth. The grain growth exponents are shown to be 2.85 and 2.42 for normalizing and annealing, respectively.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: neuqgao@163.com

References

Hide All
1.Brady, M.P., Yamamoto, Y., Santella, M.L., Maziasz, P.J., Pint, B.A., Liu, C., Lu, Z., and Bei, H.: The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60(7), 12 (2008).
2.Yamamoto, Y., Brady, M.P., Lu, Z.P., Maziasz, P.J., Liu, C.T., Pint, B.A., More, K.L., Meyer, H., and Payzant, E.A.: Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316(5823), 433 (2007).
3.Brady, M.P., Yamamoto, Y., Santella, M.L., and Walker, L.R.: Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels. Oxid. Met. 72(5–6), 311 (2009).
4.Yamamoto, Y., Brady, M.P., Lu, Z.P., Liu, C.T., Takeyama, M., Maziasz, P.J., and Pint, B.A.: Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates. Metall. Mater. Trans. A 38(11), 2737 (2007).
5.Trotter, G. and Baker, I.: The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe–20Cr–30Ni–2Nb–5Al. Mater. Sci. Eng., A 627, 270 (2015).
6.Yamamoto, Y., Brady, M.P., Santella, M.L., Bei, H., Maziasz, P.J., and Pint, B.A.: Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 42(4), 922 (2011).
7.Xu, X.Q., Zhang, X.F., Chen, G.L., and Lu, Z.P.: Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Mater. Lett. 65(21), 3285 (2011).
8.Moon, J., Lee, T.H., Heo, Y.U., Han, Y.S., Kang, J.Y., Ha, H.Y., and Suh, D.W.: Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel. Mater. Sci. Eng., A 645, 72 (2015).
9.Yamamoto, Y., Santella, M.L., Brady, M.P., Bei, H., and Maziasz, P.J.: Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 40(8), 1868 (2009).
10.Yamamoto, Y., Takeyama, M., Lu, Z.P., Liu, C.T., Evans, N.D., Maziasz, P.J., and Brady, M.P.: Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics 16(3), 453 (2008).
11.Xu, X.Q., Zhang, X.F., Sun, X.Y., and Lu, Z.P.: Roles of manganese in the high-temperature oxidation resistance of alumina-forming austenitic steels at above 800 °C. Oxid. Met. 78(5–6), 349 (2012).
12.Brady, M.P., Magee, J., Yamamoto, Y., Helmick, D., and Wang, L.: Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance. Mater. Sci. Eng., A 590, 101 (2014).
13.Zhou, D.Q., Xu, X.Q., Mao, H.H., Yan, Y.F., Nieh, T.G., and Lu, Z.P.: Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures. Mater. Sci. Eng., A 594, 246 (2014).
14.Trotter, G., Rayner, G., Baker, I., and Munroe, P.R.: Accelerated precipitation in the AFA stainless steel Fe–20Cr–30Ni–2Nb–5Al via cold working. Intermetallics 53, 120 (2014).
15.Gao, Q., Wang, Y., Gong, M., Qu, F., and Lin, X.: Non-isothermal austenitic transformation kinetics in Fe–10Cr–1Co alloy. Appl. Phys. A 122(2), 1 (2016).
16.Illescas, S., Fernández, J., and Guilemany, J.: Kinetic analysis of the austenitic grain growth in HSLA steel with a low carbon content. Mater. Lett. 62(20), 3478 (2008).
17.Kaijalainen, A.J., Suikkanen, P.P., Limnell, T.J., Karjalainen, L.P., Kömi, J.I., and Porter, D.A.: Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloys Comp. 577, S642 (2013).
18.Tian, L., Ao, Q., and Li, S.: Effect of austenitic state on microstructure and mechanical properties of martensite/bainite steel. J. Mater. Res. 29(07), 887 (2014).
19.Wang, L., Wang, Z., and Lu, K.: Grain size effects on the austenitization process in a nanostructured ferritic steel. Acta Mater. 59, 3710 (2011).
20.Banerjee, K., Militzer, M., Perez, M., and Wang, X.: Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel. Metall. Mater. Trans. A 41(12), 3161 (2010).
21.Rios, P.R.: Abnormal grain growth development from uniform grain size distributions. Acta Mater. 45(4), 1785 (1997).
22.Rios, P.R.: Abnormal grain growth in pure materials. Acta Metall. Mater. 40(10), 2765 (1992).
23.Garzón, C.M. and Ramirez, A.J.: Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel. Acta Mater. 54(12), 3321 (2006).
24.Adrian, H. and Pickering, F.B.: Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0.008–0.018%N. Mater. Sci. Tech. 7(2), 176 (1991).
25.Manohar, P.A., Dunne, D.P., Chandra, T., and Killmore, C.R.: Grain growth predictions in microalloyed steels. ISIJ Int. 36(2), 194 (1996).
26.Gill, S.P.A. and Cocks, A.C.F.: A variational approach to two dimensional grain growth—II. Numerical results. Acta Mater. 44(12), 4777 (1996).
27.Burke, J.E. and Turnbull, D.: Recrystallization and grain growth (Pergamon Press, London, 1952).
28.Beck, P.A., Kremer, J.C., Demer, L., and Holzworth, M.: Grain growth in high-purity aluminum and in an aluminum-magnesium alloy. Trans. Am. Inst. Min., Metall. Pet. Eng. 175, 372 (1948).
29.Uhm, S., Moon, J., Lee, C., Yoon, J., and Lee, B.: Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior. ISIJ Int. 44(7), 1230 (2004).
30.Moon, J., Lee, J., and Lee, C.: Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater. Sci. Eng., A 459(1–2), 40 (2007).
31.Pous-Romero, H., Lonardelli, I., Cogswell, D., and Bhadeshia, H.: Austenite grain growth in a nuclear pressure vessel steel. Mater. Sci. Eng., A 567, 72 (2013).
32.Li, D., Shinozaki, K., Harada, H., and Ohishi, K.: Investigation of precipitation behavior in a weld deposit of 11Cr–2W ferritic steel. Metall. Mater. Trans. A 36(1), 107 (2005).
33.Gao, Q.Z., Gong, M.L., Wang, Y.L., Qu, F., and Huang, J.N.: Phase transformation and properties of Fe–Cr–Co alloys with low cobalt content. Mater. Trans. 56(9), 1491 (2015).
34.Staśko, R., Adrian, H., and Adrian, A.: Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Mater. Charact. 56(4–5), 340 (2006).
35.Hillert, M.: On the theory of normal and abnormal grain growth. Acta Metall. 13(3), 227 (1965).
36.Zhou, T., O'malley, R.J., and Zurob, H.S.: Study of grain-growth kinetics in delta-ferrite and austenite with application to thin-slab cast direct-rolling microalloyed steels. Metall. Mater. Trans. A 41(8), 2112 (2010).
37.Yue, C., Zhang, L., Liao, S., and Gao, H.: Kinetic analysis of the austenite grain growth in GCr15 steel. J. Mater. Eng. Perform. 19(1), 112 (2010).
38.Militzer, M., Hawbolt, E.B., Meadowcroft, T.R., and Giumelli, A.: Austenite grain growth kinetics in Al-killed plain carbon steels. Metall. Mater. Trans. A 27(11), 3399 (1996).
39.Atkinson, H.V.: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469 (1988).
40.Gil, F., Manero, J., and Planell, J.: Effect of grain size on the martensitic transformation in NiTi alloy. J. Mater. Sci. 30(10), 2526 (1995).

Keywords

Austenite grain growth in alumina-forming austenitic steel

  • Qiuzhi Gao (a1), Fu Qu (a1), Hailian Zhang (a2) and Qiang Huo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed