Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T02:08:14.182Z Has data issue: false hasContentIssue false

Atomistic kinetic Monte Carlo—Embedded atom method simulation on growth and morphology of Cu–Zn–Sn precursor of Cu2ZnSnS4 solar cells

Published online by Cambridge University Press:  17 January 2020

Zunhong Wu
Affiliation:
Hubei Special Equipment Inspection and Testing Institute, National Center for Quality Supervision and Inspection of Nondestructive Testing Equipment for Industrial Digital Imaging, Wuhan 430077, China
Kai Tan
Affiliation:
Hubei Special Equipment Inspection and Testing Institute, National Center for Quality Supervision and Inspection of Nondestructive Testing Equipment for Industrial Digital Imaging, Wuhan 430077, China
Runjie Zhang
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Qiang Wei
Affiliation:
School of Education, Jianghan University, Wuhan 430056, China
Yixin Lin*
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
*
a)Address all correspondence to this author. e-mail: yixinlin@hust.edu.cn
Get access

Abstract

An atomistic kinetic Monte Carlo coupled with the embedded-atom method is used to simulate film growth and morphology evolution of a Cu–Zn–Sn precursor of Cu2ZnSnS4 solar cells by single-step electrodeposition. The deposition and diffusion events of three different metallic atoms are described by the simulation. Moreover, the multibody Cu–Zn–Sn potential is used to calculate diffusion barrier energy. The effects of process factors, including temperature and electrode potential, on the cross-section morphology and surface roughness are explored, while keeping the elemental composition ratios constant. The lowest roughness with the smoothest morphology is obtained at the optimal parameters. The distribution and transformation behaviors of cluster sizes are investigated to describe the alloy film growth process. Furthermore, the comparison between deposition events and diffusion events reveals that deposition events depend primarily on individual deposition rates of different metallic atoms, but diffusion events are mainly dependent on the interaction of metallic atoms. The film morphology evolution is visualized by three-dimensional configuration with increasing numbers of atoms, which suggests a competing mechanism between nucleation and growth of the thin film alloy.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chopra, K.L., Paulson, P.D., and Dutta, V.: Thin-film solar cells: An overview. Prog. Photovoltaics 12, 69 (2004).CrossRefGoogle Scholar
Suryawanshi, M.P., Agawane, G.L., Bhosale, S.M., Shin, S.W., Patil, P.S., Kim, J.H., and Moholkar, A.V.: CZTS based thin film solar cells: A status review. Mater. Technol. 28, 98 (2013).CrossRefGoogle Scholar
Lee, S.G., Kim, J., Woo, H.S., Jo, Y., Inamdar, A.I., Pawar, S.M., Kim, H.S., Jung, W., and Im, H.S.: Structural, morphological, compositional, and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application. Curr. Appl. Phys. 14, 254 (2014).CrossRefGoogle Scholar
Pawar, S.M., Pawar, B.S., Moholkar, A.V., Choi, D.S., Yun, J.H., Moon, J.H., Kolekar, S.S., and Kim, J.H.: Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochim. Acta 55, 4057 (2010).CrossRefGoogle Scholar
Gurav, K.V., Shin, S.W., Patil, U.M., Suryawanshi, M.P., Pawar, S.M., Gang, M.G., Vanalakar, S.A., Yun, J.H., and Kim, J.H.: Improvement in the properties of CZTSSe thin films by selenizing single-step electrodeposited CZTS thin films. J. Alloys Compd. 631, 178 (2015).CrossRefGoogle Scholar
Ananthoju, B., Sonia, F.J., Kushwaha, A., Bahadur, D., Medhekar, N.V., and Aslam, M.: Improved structural and optical properties of Cu2ZnSnS4 thin films via optimized potential in single bath electrodeposition. Electrochim. Acta 137, 154 (2014).CrossRefGoogle Scholar
Clauwaert, K., Binnemans, K., Matthijs, E., and Fransaer, J.: Electrochemical studies of the electrodeposition of copper–zinc–tin alloys from pyrophosphate electrolytes followed by selenization for CZTSe photovoltaic cells. Electrochim. Acta 188, 344 (2016).CrossRefGoogle Scholar
Clauwaert, K., Goossens, M., De Wild, J., Colombara, D., Dale, P.J., Binnemans, K., Matthijs, E., and Fransaer, J.: Electrodeposition and selenization of brass/tin/germanium multilayers for Cu2Zn(Sn1−xGex)Se4 thin film photovoltaic devices. Electrochim. Acta 198, 104 (2016).CrossRefGoogle Scholar
Khalil, M.I., Bernasconi, R., and Magagnin, L.: CZTS layers for solar cells by an electrodeposition-annealing route. Electrochim. Acta 145, 154 (2014).CrossRefGoogle Scholar
Jiang, F., Ikeda, S., Harada, T., and Matsumura, M.: Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack. Adv. Energy Mater. 4, 1301381 (2014).CrossRefGoogle Scholar
Vauche, L., Risch, L., Sánchez, Y., Dimitrievska, M., Pasquinelli, M., Goislard de Monsabert, T., Grand, P-P., Jaime-Ferrer, S., and Saucedo, E.: 8.2% pure selenide kesterite thin-film solar cells from large-area electrodeposited precursors. Prog. Photovolt. Res. Appl. 24, 38 (2016).CrossRefGoogle Scholar
Lehner, J., Ganchev, M., Loorits, M., Revathi, N., Raadik, T., Raudoja, J., Grossberg, M., Mellikov, E., and Volobujeva, O.: Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers. J. Cryst. Growth 380, 236 (2013).CrossRefGoogle Scholar
Shin, S.W., Pawar, S.M., Park, C.Y., Yun, J.H., Moon, J-H., Kim, J.H., and Lee, J.Y.: Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol. Energy Mater. Sol. Cells 95, 3202 (2011).CrossRefGoogle Scholar
Jiang, Q., Chen, X., Gao, H., Feng, C., and Guo, Z.: Synthesis of Cu2ZnSnS4 as novel anode material for lithium-ion battery. Electrochim. Acta 190, 703 (2016).CrossRefGoogle Scholar
Tlemçani, T.S., Benamar, E.B., Moursli, F.C.E., Hajji, F., Edfouf, Z., Taibi, M., Labrim, H., Belhorma, B., Aazou, S., Schmerber, G., Bouras, K., Sekkat, Z., Dinia, A., Ulyashin, A., Slaoui, A., and Abd-Lefdil, M.: Deposition time effect on the physical properties of Cu2ZnSnS4 (CZTS) thin films obtained by electrodeposition route onto Mo-coated glass substrates. Energy Procedia 84, 127 (2015).CrossRefGoogle Scholar
Shin, S., Park, C., Kim, C., Kim, Y., Park, S., and Lee, J-H.: Cyclic voltammetry studies of copper, tin and zinc electrodeposition in a citrate complex system for CZTS solar cell application. Curr. Appl. Phys. 16, 207 (2016).CrossRefGoogle Scholar
Agawane, G.L., Kamble, A.S., Vanalakar, S.A., Shin, S.W., Gang, M.G., Yun, J.H., Gwak, J., Moholkar, A.V., and Kim, J.H.: Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol–gel technique. Mater. Lett. 158, 58 (2015).CrossRefGoogle Scholar
Senninger, O., Martínez, E., Soisson, F., Nastar, M., and Bréchet, Y.: Atomistic simulations of the decomposition kinetics in Fe–Cr alloys: Influence of magnetism. Acta Mater. 73, 97 (2014).CrossRefGoogle Scholar
Leetmaa, M. and Skorodumova, N.V.: KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations. Comput. Phys. Commun. 185, 2340 (2014).CrossRefGoogle Scholar
Feigelson, R.S.: 1—Crystal Growth through the Ages: A Historical Perspective in Handbook of Crystal Growth, 2nd ed. (Elsevier Press, Tokyo, Japan, 2015); p. 1.Google Scholar
Chatterjee, A. and Vlachos, D.G.: An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Comput.-Aided Mater. Des. 14, 253 (2007).CrossRefGoogle Scholar
Giménez, M.C., Del Pópolo, M.G., and Leiva, E.P.M.: Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system. Langmuir 18, 9087 (2002).CrossRefGoogle Scholar
Treeratanaphitak, T., Pritzker, M.D., and Abukhdeir, N.M.: Atomistic kinetic Monte Carlo simulations of polycrystalline copper electrodeposition. Electrochem. Commun. 46, 140 (2014).CrossRefGoogle Scholar
Zhu, Y. and Pan, X.: Kinetic Monte Carlo simulation of 3-D growth of NiTi alloy thin films. Appl. Surf. Sci. 321, 24 (2014).CrossRefGoogle Scholar
Castin, N., Pascuet, M.I., and Malerba, L.: Mobility and stability of large vacancy and vacancy-copper clusters in iron: An atomistic kinetic Monte Carlo study. J. Nucl. Mater. 429, 315 (2012).CrossRefGoogle Scholar
Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).CrossRefGoogle ScholarPubMed
Zhu, Y.G. and Wang, T.L.: Kinetic Monte Carlo simulation of the initial growth of Ag thin films. Appl. Surf. Sci. 324, 831 (2015).CrossRefGoogle Scholar
Gaillard, P., Chanier, T., Henrard, L., Moskovkin, P., and Lucas, S.: Multiscale simulations of the early stages of the growth of graphene on copper. Surf. Sci. 637–638, 11 (2015).CrossRefGoogle Scholar
Chen, S., Luo, J., and Bu, S.: Morphology transition of Ag ultrathin films on Pt(111): Kinetic Monte Carlo simulation. Appl. Surf. Sci. 301, 289 (2014).CrossRefGoogle Scholar
Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., and Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123, 133 (2002).CrossRefGoogle Scholar
Jun Liu, C.L. and Conway, P.P.: Kinetic Mento Carlo simulation of the electrodeposition of polycrystalline copper: Effects of substrates and deposition parameters on the microstructure of deposits. Electrochim. Acta 97, 132 (2013).Google Scholar
Timothy O Drews, A.R., Erlebacher, J., and Braatz, R.D.: Stochastic simulation of the early stages of kinetically limited electrodeposition. J. Electrochem. Soc. 153, 434 (2006).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method derivation and application to impurities surfaces and other defects in metals. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 6443 (1984).CrossRefGoogle Scholar
Ackland, G.J., Tichy, G., Vitek, V., and Finnis, M.W.: Simple n-body potentials for the noble metals and nickel. Philos. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
Baskes, M.I. and Johnson, R.A.: Modified embedded atom potentials for HCP metals. Modell. Simul. Mater. Sci. Eng. 2, 147 (1994).CrossRefGoogle Scholar
Ghosh, G. and Olson, G.B.: Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results. Acta Mater. 55, 3281 (2007).CrossRefGoogle Scholar
Adams, J.B., Foiles, S.M., and Wolfer, W.G.: Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4, 102 (1989).CrossRefGoogle Scholar
Bangwei, Z. and Yifang, O.: Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method. Phys. Rev. B 48, 3022 (1993).CrossRefGoogle ScholarPubMed
Johnson, R.A.: Alloy models with the embedded-atom method. Phys. Rev. B 39, 12554 (1989).CrossRefGoogle ScholarPubMed
Purja Pun, G.P., Darling, K.A., Kecskes, L.J., and Mishin, Y.: Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys. Electrochim. Acta 100, 377 (2015).Google Scholar