Skip to main content Accessibility help
×
Home

Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics

  • Sašo Šturm (a1), Makoto Shiojiri (a2) and Miran Čeh (a1)

Abstract

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: saso.sturm@ijs.si

References

Hide All
1Cocco, A. and Massazza, F.: Microscopic study of the system SrOTiO2. Ann. Chim. (Rome) 53, 883 (1963).
2McCarthy, G.J., White, W.B., and Roy, R.: Phase equilibria in the 1375 °C isotherm of the system Sr-Ti-O. J. Am. Ceram. Soc. 52, 463 (1969).
3Witek, S., Smyth, D.M., and Pickup, H.: Variability of the Sr/Ti ratio in SrTiO3. J. Am. Ceram. Soc. 67, 372 (1984).
4Ruddlesden, S.N. and Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).
5Udayakumar, K.R. and Cormack, A.N.: Structural aspects of phase equilibria in the strontium-titanium-oxygen system. J. Am. Ceram. Soc. 71, C469 (1988).
6Hawkins, K. and White, T.J.: Defect structure and chemistry of (CaxSr1-x)n+1TinO3n+1 layer perovskites. Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).
7McCoy, M.A., Grimes, R.W., and Lee, W.E.: Phase stability and interfacial structures in the SrO-SrTiO3 system. Philos. Mag. A 75, 833 (1997).
8Noguera, C.: Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1(n=1-3). Philos. Mag. Lett. 80, 173 (2000).
9Bacq, O. Le, Salinas, E., Pisch, A., Bernard, C., and Pasturel, A.: First-principles structural stability in the strontium-titaniumoxygen system. Philos. Mag. 86, 2283 (2006).
10Tilley, R.J.: An electron microscope study of perovskite-related oxides in the Sr-Ti-O system. J. Solid State Chem. 21, 293 (1977).
11Fujimoto, M., Tanaka, J., and Shirasaki, S.: Planar faults and grain boundary precipitation in non-stoichiometric (Sr,Ca)TiO3 ceramics. Jpn. J. Appl. Phys. 27, 1162 (1988).
12Šturm, S., Rečnik, A., Scheu, C., and Čeh, M.: Formation of Ruddlesden-Popper faults and polytype phases in SrO-doped SrTiO3. J. Mater. Res. 15, 2131 (2000).
13Čeh, M. and Kolar, D.: Solubility of CaO in CaTiO3. J. Mater. Sci. 29, 6295 (1994).
14Rečnik, A., Čeh, M., and Kolar, D.: Polytype induced exaggerated grain growth in ceramics. J. Eur. Ceram. Soc. 21, 2117 (2001).
15Šturm, S., Rečnik, A., and Čeh, M.: Nucleation and growth of planar faults in SrO-excess SrTiO3. J. Eur. Ceram. Soc. 21, 2141 (2001).
16Čeh, M., Gu, H., Müllejans, H., and Rečnik, A.: Analytical electron microscopy of planar faults in SrO-doped CaTiO3. J. Mater. Res. 12, 2438 (1997).
17Suzuki, T., Nishi, Y., and Fujimoto, M.: Ruddlesden-Popper planar faults and nanotwins in heteroepitaxial nonstoichiometric barium titanate thin films. J. Am. Ceram. Soc. 83, 3185 (2000).
18Iwazaki, Y., Suzuki, T., Sekiguchi, S., and Fujimoto, M.: Artificial SrTiO3/SrO superlattices by pulsed laser deposition. Jpn. J. Appl. Phys. 38, L1443 (1999).
19Tian, W., Pan, X.Q., Haeni, J.H., and Scholm, D.G.: Transmissionelectron-microscopy study of n=1-5 Srn+1TinO3n+1 epitaxial thin films. J. Mater. Res. 16, 2013 (2001).
20Fujimoto, M. and Suzuki, T.: High-resolution transmission electron microscopy and computer simulation of defect structures in electronic perovskite ceramics. J. Ceram. Soc. Jpn. 109, 722 (2001).
21Suzuki, T. and Fujimoto, M.: First-principles structural stability study of nonstoichiometry-related planar defects in SrTiO3 and BaTiO3. J. Appl. Phys. 89, 5622 (2001).
22Myhra, S., Rivière, J.C., Hawkins, K., and White, T.J.: Crystallographic changes in (CaxSr1-x)n+1TinO3n+1 layer perovskites: XPS and XAES investigations. J. Mater. Res. 7, 482 (1992).
23Battle, P.D., Green, M.A., Laskey, N.S., Millburn, J.E., Murphy, L., Rosseinsky, M.J., Sullivan, S.P., and Vente, J.F.: Layered Ruddlesden-Popper manganese oxides: Synthesis and cation ordering. Chem. Mater. 9, 552 (1997).
24Fujimoto, M., Suzuki, T., Nishi, Y., and Arai, K.: Calcium-ion selective site occupation at Ruddlesden-Popper-type faults and the resultant dielectric properties of A-site-excess strontium calcium titanate ceramics. J. Am. Ceram. Soc. 81, 33 (1998).
25Saìnchez-Anduìjar, M. and Senpariì-Rodriìguez, M.A.: Cation ordering and electrical properties of the Ruddlesden-Popper Gd2-2xSr1+2XCo2O7 compounds (x=0 and 0.10). Z. Anorg. Allg. Chem. 633, 1890 (2007).
26Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).
27Kirkland, E.J.: Advanced Computing in Electron Microscopy (Plenum Press, New York, 1998), pp. 63, 153.
28Yamazaki, T., Watanabe, K., Recčnik, A.,CČ eh, M., Kawasaki, M., and Shiojiri, M.: Simulation of atomic-scale high-angle annular dark-field scanning transmission electron microscopy images. J. Electron Microsc. (Tokyo) 49, 753 (2000).
29Watanabe, K., Yamazaki, T., Hashimoto, I., and Shiojiri, M.: Atomicresolution annular dark-field STEM image calculations. Phys. Rev. B 64, 115432 (2001).
30Ishizuka, K.: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).
31Spence, J.C.H. and Koch, C.: On the measurement of dislocation core periods by nanodiffraction. Philos. Mag. B 81, 1701 (2001).
32LeBeau, J.M., Findlay, S.D., Allen, L.J., and Stemmer, S.: Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).
33Stadelmann, P.A.: EMS: A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).
34Koch, C.: Quantitative TEM and STEM simulations. http://www. mf.mpg.de/en/organisation/hsm/koch/stem/index.html (accessed June 18, 2009).
35Recčnik, A., Močbus, G., and Šturm, S.: Image-warp: A real-space restoration method for high-resolution STEM images using quantitative HRTEM analysis. Ultramicroscopy 103, 285 (2005).
36Šturm, S., Koch, C., CČ eh, M., Tchernychova, E., and Rühle, M.: Quantitative HRTEM and HAADF-STEM analysis of Ruddlesden- Popper planar faults in nonstroichiometric SrTiO3, edited by Čeh, M., Dražić, G., and Fidler, S. (7th MCM Symp. Proc., Portorozč, Slovenia, 2005), p. 59.

Keywords

Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics

  • Sašo Šturm (a1), Makoto Shiojiri (a2) and Miran Čeh (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed