Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T03:21:03.368Z Has data issue: false hasContentIssue false

Assessment of elastic anisotropy and incipient plasticity in Fe3C by nanoindentation

Published online by Cambridge University Press:  20 September 2011

Jon Alkorta*
Affiliation:
Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and Technological Campus of the University of Navarra (TECNUN), 20018 San Sebastián, Spain
Javier Gil Sevillano
Affiliation:
Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and Technological Campus of the University of Navarra (TECNUN), 20018 San Sebastián, Spain
*
a)Address all correspondence to this author. e-mail: jalkorta@ceit.es
Get access

Abstract

The elastic anisotropy of cementite (Fe3C) is still under discussion. Recent theoretical (ab initio) calculations predict a very high elastic anisotropy for this iron carbide, and a few published experiments suggest that prediction could be true. This work presents a first attempt of using nanoindentation for assessing the elastic anisotropy of such an important component of steels. Our nanoindentation results show that the elastic anisotropy of Fe3C is high but smaller than predicted by ab initio calculations. The elastic modulus is obtained from the load–penetration curves before the first pop-in indicative of plasticity nucleation is detected. The tests thus provide information on the plastic anisotropy of cementite. Surprisingly, the mean indentation pressure or the maximum shear stress under the indenter at the onset of plasticity has been observed to be nearly independent of the crystalline orientation of the indented surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2.Sneddon, I.N.: The relation between load and penetration in the axisimmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
3.Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20, 432 (2005).CrossRefGoogle Scholar
4.Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: Comments on “Comment on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [J. Mater. Res. 20, 1090 (2005)]. J. Mater. Res. 21, 302 (2006).CrossRefGoogle Scholar
5.Vlassak, J.J., Ciavarella, M., Barber, J.R., and Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701 (2003).CrossRefGoogle Scholar
6.Vlassak, J.J. and Nix, W.D.: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A 67, 1045 (1993).CrossRefGoogle Scholar
7.Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).CrossRefGoogle Scholar
8.Swadener, J.G. and Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81, 447 (2001).CrossRefGoogle Scholar
9.Ledbetter, H.: Polycrystalline elastic constants of in situ cementite (Fe3C). Mater. Sci. Eng., A 527, 2657 (2010).CrossRefGoogle Scholar
10.Jiang, C., Srinivasan, S.G., Caro, A., and Maloy, S.A.: Structural, elastic, and electronic properties of Fe3C from first principles. J. Appl. Phys. 103, 043502 (2008).CrossRefGoogle Scholar
11.Nikolussi, M., Shang, S.L., Gressmann, T., Leineweber, A., Mittemeijer, E., Wang, Y., and Liu, Z.K.: Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scr. Mater. 59, 814 (2008).CrossRefGoogle Scholar
12.Lv, Z.Q., Zhang, F.C., Sun, S.H., Wang, Z.H., Jiang, P., Zhang, W.H., and Fu, W.T.: First-principles study on the mechanical, electronic and magnetic properties of Fe3C. Comput. Mater. Sci. 44, 690 (2008).CrossRefGoogle Scholar
13.Henriksson, K.O.E., Sandberg, N., and Wallenius, J.: Carbides in stainless steels: Results from ab initio investigations. Appl. Phys. Lett. 93, 191912 (2008).CrossRefGoogle Scholar
14.Vocadlo, L., Brodholt, J., Dobson, D.P., Knight, K.S., Marshall, W.G., Price, G.D., and Wood, I.G.: The effect of ferromagnetism on the equation of state of Fe(3)C studied by first-principles calculations. Earth Planet. Sci. Lett. 203, 567 (2002).CrossRefGoogle Scholar
15.Chiou, W.C. and Carter, E.A.: Structure and stability of Fe3C-cementite surfaces from first principles. Surf. Sci. 530, 87 (2003).CrossRefGoogle Scholar
16.Huang, L., Skorodumova, N.V., Belonoshko, A.B., Johansson, B., and Ahuja, R.: Carbon in iron phases under high pressure. Geophys. Res. Lett. 32, L 1314 (2005).CrossRefGoogle Scholar
17.Faraoun, H.I., Zhang, Y.D., Esling, C., and Aourag, H.: Crystalline, electronic, and magnetic structures of θ-Fe3C, χ-Fe5C2, and η-Fe2C from first principle calculation. J. Appl. Phys. 99, 093508 (2006).CrossRefGoogle Scholar
18.Jang, J.H., Kim, I.G., and Bhadeshia, H.: Substitutional solution of silicon in cementite: A first-principles study. Comput. Mater. Sci. 44, 1319 (2009).CrossRefGoogle Scholar
19.Zhou, C.T., Xiao, B., Feng, J., Xing, J.D., Xie, X.J., Chen, Y.H., and Zhou, R.: First principles study on the elastic properties and electronic structures of (Fe, Cr)(3)C. Comput. Mater. Sci. 45, 986 (2009).CrossRefGoogle Scholar
20.Nisar, J. and Ahuja, R.: Equation of state (EOS) and collapse of magnetism in iron-rich meteorites at high pressure by first-principles calculations. Phys. Earth Planet. Inter. 182, 175 (2010).CrossRefGoogle Scholar
21.Ono, S. and Mibe, K.: Magnetic transition of iron carbide at high pressures. Phys. Earth Planet. Inter. 180, 1 (2010).CrossRefGoogle Scholar
22.Foerster, F.: New method for determination of modulous of elasticity and damping. Z. Metallk. 29(4), 109115 (1937).Google Scholar
23.Webb, W.W. and Forgeng, W.D.: Mechanical behavior of microcrystals. Acta Mater. 6, 462 (1958).CrossRefGoogle Scholar
24.Laszlo, F. and Nolle, H.: On some physical properties of cementite. J. Mech. Phys. Solids 7, 193 (1959).CrossRefGoogle Scholar
25.Jellinghaus, W.: Production and properties of solid cementite. Naturwissenschaften 51, 553 (1964).CrossRefGoogle Scholar
26.Hanabusa, T., Fukura, J., and Fujiwara, H.: X-ray stress measurements on the cementite phase in steels. Bull. JSME 12, 931 (1969).CrossRefGoogle Scholar
27.Glikman, L.A., Kartashov, A.M., Rubashkina, Z.M., and Lobov, A.F.: The modulus of normal elasticity of cementite. Problemy Prochnosti 4, 123 (1975).Google Scholar
28.Drapkin, B.M. and Fokin, B.V.: On Young modulus of cementite. Fizika Metall. 49, 649 (1980).Google Scholar
29.Kagawa, A., Okamoto, T., and Matsumoto, H.: Young modulus and thermal-expansion of pure iron cementite alloy castings. Acta Mater. 35, 797 (1987).CrossRefGoogle Scholar
30.Winholtz, R.A. and Cohen, J.B.: Load sharing of the phases in 1080-steel during low-cycle fatigue. Metall. Trans. A 23, 341 (1992).CrossRefGoogle Scholar
31.Wood, B.J.: Carbon in the core. Earth Planet. Sci. Lett. 117, 593 (1993).CrossRefGoogle Scholar
32.Miodownik, A.P.: Young modulus for carbides of 3d elements (with particular reference to Fe3C). Mater. Sci. Technol. 10, 190 (1994).CrossRefGoogle Scholar
33.Li, S.J., Ishihara, M., Yumoto, H., Aizawa, T., and Shimotomai, M.: Characterization of cementite films prepared by electron-shower-assisted PVD method. Thin Solid Films 316, 100 (1998).CrossRefGoogle Scholar
34.Mizubayashi, H., Li, S.J., Yumoto, H., and Shimotomai, M.: Young’s modulus of single phase cementite. Scr. Mater. 40, 773 (1999).CrossRefGoogle Scholar
35.Jephcoat, A.: Chemistry and physics of the Earth’s core. J. Conf. Abstr. 5, 556 (2000).Google Scholar
36.Scott, H.P., Williams, Q., and Knittle, E.: Stability and equation of state of Fe3C to 73 GPa: Implications for carbon in the Earth’s core. Geophys. Res. Lett. 28, 1875 (2001).CrossRefGoogle Scholar
37.Umemoto, M., Liu, Z.G., Masuyama, K., and Tsuchiya, K.: Influence of alloy additions on production and properties of bulk cementite. Scr. Mater. 45, 391 (2001).CrossRefGoogle Scholar
38.Li, J., Mao, H.K., Fei, Y., Gregoryanz, E., Eremets, M., and Zha, C.S.: Compression of Fe3C to 30 GPa at room temperature. Phys. Chem. Miner. 29, 166 (2002).CrossRefGoogle Scholar
39.Umemoto, M., Todaka, Y., Takahashi, T., Li, P., Tokumiya, R., and Tsuchiya, K.: Characterization of bulk cementite produced by mechanical alloying and spark plasma sintering, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, 2003, p. 607.Google Scholar
40.Dodd, S.P., Saunders, G.A., Cankurtaran, M., James, B., and Acet, M.: Ultrasonic study of the temperature and hydrostatic-pressure dependences of the elastic properties of polycrystalline cementite (Fe3C). Phys. Status Solidi A 198, 272 (2003).CrossRefGoogle Scholar
41.Lin, J.F., Struzhkin, V.V., Mao, H.K., Hemley, R.J., Chow, P., Hu, M.Y., and Li, J.: Magnetic transition in compressed Fe3C from x-ray emission spectroscopy. Phys. Rev. B 70, 212405 (2004).CrossRefGoogle Scholar
42.Duman, E., Acet, M., Hulser, T., Wassermann, E.F., Rellinghaus, B., Itie, J.P., and Munsch, P.: Large spontaneous magnetostrictive softening below the Curie temperature of Fe3C Invar particles. J. Appl. Phys. 96, 5668 (2004).CrossRefGoogle Scholar
43.Horimoto, Y., Che, L., Gotoh, M., and Hirose, Y.: Residual stress measurement of cementite phase in plastically deformed carbon steels. JCPDS-Int Centre Diff Data 207 (2006).Google Scholar
44.Che, L., Gotoh, M., Horimoto, Y., and Hirose, Y.: Effect of microstructure of cementite on interphase stress state in carbon steel. J. Iron Steel Res. Int. 14, 31 (2007).CrossRefGoogle Scholar
45.Gao, L.L., Chen, B., Lerche, M., Alp, E.E., Sturhahn, W., Zhao, J.Y., Yavas, H., and Li, J.: Sound velocities of compressed Fe(3)C from simultaneous synchrotron x-ray diffraction and nuclear resonant scattering measurements. J. Synchrotron Radiat. 16, 714 (2009).CrossRefGoogle ScholarPubMed
46.Fiquet, G., Badro, J., Gregoryanz, E., Fei, Y.W., and Occelli, F.: Sound velocity in iron carbide (Fe(3)C) at high pressure: Implications for the carbon content of the Earth’s inner core. Phys. Earth Planet. Inter. 172, 125 (2009).CrossRefGoogle Scholar
47.Cao, Y.P., Qian, X.Q., and Huber, N.: Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain. Mater. Sci. Eng.,A 454, 1 (2007).CrossRefGoogle Scholar
48.Taljat, B. and Pharr, G.M.: Development of pile-up during spherical indentation of elastic-plastic solids. Int. J. Solids Struct. 41, 3891 (2004).CrossRefGoogle Scholar
49.Khan, M.Y., Brown, L.M., and Chaudhri, M.M.: The effect of crystal orientation on the indentation cracking and hardness of Mgo single-crystals. J. Phys. D: Appl. Phys. 25, A257 (1992).CrossRefGoogle Scholar