Skip to main content Accessibility help
×
Home

a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production

  • Félix Urbain (a1), Vladimir Smirnov (a1), Jan-Philipp Becker (a1), Uwe Rau (a1), Friedhelm Finger (a1), Jürgen Ziegler (a2), Bernhard Kaiser (a2) and Wolfram Jaegermann (a2)...

Abstract

Thin film silicon tandem junction solar cells based on amorphous silicon (a-Si:H) and microcrystalline silicon (µc-Si:H) were developed with focus on high open-circuit voltages for the application as photocathodes in integrated photoelectrochemical cells for water electrolysis. By adjusting various parameters in the plasma enhanced chemical vapor deposition process of the individual µc-Si:H single junction solar cells, we showed that a-Si:H/µc-Si:H tandem junction solar cells exhibit open-circuit voltage over 1.5 V with solar energy conversion efficiency of 11% at a total silicon layer thickness below 1 µm. Our approach included thickness reduction, controlled SiH4 profiling, and incorporation of intrinsic interface buffer layers. The applicability of the tandem devices as photocathodes was evaluated in a photoelectrochemical cell. The a-Si:H/µc-Si:H based photocathodes exhibit a photocurrent onset potential of 1.3 V versus RHE and a short-circuit photocurrent of 10.0 mA/cm2. The presented approach may provide an efficient and low-cost pathway to solar hydrogen production.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a) Address all correspondence to this author. e-mail: f.urbain@fz-juelich.de

References

Hide All
1. Miller, E.: White Papers on Materials for Photoelectrochemical Water Splitting (DOE PEC Working Group, Washington, DC, 2013).
2. Grimes, C.A., Varghese, O.K., and Ranjan, S.: Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis (Springer, New York, 2008).
3. Li, Z., Luo, W., Zhang, M., Feng, J., and Zou, Z.: Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347370 (2013).
4. Weber, M.F. and Dignam, M.J.: Splitting water with semiconducting photoelectrodes - Efficiency considerations. Int. J. Hydrogen Energy 11(4), 225232 (1986).
5. Nozik, A.J.: Photoelectrochemistry: Applications to solar energy conversion. Ann. Rev. Phys. Chem. 29, 189222 (1978).
6. Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362), 425527 (1998).
7. Khaselev, O., Bansal, A., and Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26(2), 127132 (2001).
8. Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M., and Tributsch, H.: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrogen Energy 26, 653659 (2001).
9. Jacobsson, T.J., Fjällström, V., Sahlberg, M., Edoff, M., and Edvinsson, T.: A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676 (2013).
10. Abdi, F.F., Han, L., Smets, A.H.M., Zeman, M., Dam, B., and van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).
11. Lin, Y., Battaglia, C., Boccard, M., Hettick, M., Yu, Z., Ballif, C., Ager, J.W., and Javey, A.: Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13(11), 56155618 (2013).
12. Han, L., Abdi, F.F., Perez Rodriguez, P., Dam, B., van de Krol, R., Zeman, M., and Smets, A.H.M.: Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode. Phys. Chem. Chem. Phys. 16, 42204229 (2014).
13. Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Pijpers, J.J.H., and Nocera, D.G.: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645648 (2003).
14. Rocheleau, R.E., Miller, E.L., and Misra, A.: High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12(1), 310 (1998).
15. Calvet, W., Murugasen, E., Klett, J., Kaiser, B., Jaegermann, W., Finger, F., Hoch, S., Blug, M., and Busse, J.: Silicon based tandem cells: Novel photocathodes for hydrogen production. Phys. Chem. Chem. Phys. 16, 1204312050 (2014).
16. Shah, A.: Thin-Film Silicon Solar Cells, Photovoltaics and Large-area Electronics (Crc Pr Inc., Lausanne, Switzerland, 2008).
17. Keppner, H., Meier, J., Torres, P., Fischer, D., and Shah, A.: Microcrystalline silicon and micromorph tandem solar cells. J. Appl. Phys. A69, 169 (1999).
18. Klein, S., Finger, F., Carius, R., Dylla, T., Rech, B., Grimm, M., Houben, L., and Stutzmann, M.: Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films 430(1–2), 202207 (2003).
19. Böttler, W., Smirnov, V., Hüpkes, J., and Finger, F.: Texture-etched ZnO as a versatile base for optical back reflectors with well-designed surface morphologies for application in thin film solar cells. Phys. Status Solidi A 209(6), 11441149 (2012).
20. Urbain, F., Wilken, K., Smirnov, V., Astakhov, O., Lambertz, A., Becker, J-P., Rau, U., Ziegler, J., Kaiser, B., Jaegermann, W., and Finger, F.: Development of thin film amorphous silicon tandem junction based photocathodes providing high open-circuit voltages for hydrogen production. Int. J. Photoenergy 2014, 249317 (2014).
21. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H.: Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 77(6), 1447 (1998).
22. Köhler, F., Schicho, S., Wolfrum, B., Gordijn, A., Pust, S.E., and Carius, R.: Gradient etching of silicon-based thin films for depth-resolved measurements: The example of Raman crystallinity. Thin Solid Films 520(7), 26052608 (2012).
23. Smirnov, V., Das, C., Melle, T., Lambertz, A., Hülsbeck, M., Carius, R., and Finger, F.: Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells. Mater. Sci. Eng., B 159160, 4447 (2009).
24. Lambertz, A., Smirnov, V., Merdzhanova, T., Ding, K., Haas, S., Jost, G., Schropp, R.E.I., Finger, F., and Rau, U.: Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules. Sol. Energy Mat. Sol. Cells 119, 134143 (2013).
25. Gary, H.: Photoelectrochemical cell measurements: Getting the basics right. J. Phys. Chem. Lett. 3(9), 12081213 (2012).
26. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H.: Intrinsic microcrystalline silicon: A new material for photovoltaics. Sol. Energy Mater. Sol. Cells 62(1–2), 97108 (2000).
27. Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., and Shah, A.: Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 81 (1), 6171 (2004).
28. Reynolds, S., Carius, R., Finger, F., and Smirnov, V.: Correlation of structural and optoelectronic properties of thin film silicon prepared at the transition from microcrystalline to amorphous growth. Thin Solid Films 517, 6392 (2009).
29. van den Donker, M.N., Klein, S., Rech, B., and Finger, F.: Microcrystalline silicon solar cells with an open-circuit voltage above 600 mV. Appl. Phys. Lett. 90(18), 183504 (2007).
30. Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., and Finger, F.: Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers. J. Appl. Phys. 87(7), 114913 (2005).
31. Bugnon, G., Parascandolo, G., Hänni, S., Stuckelberger, M., Charrière, M., Despeisse, M., Meillaud, F., and Ballif, C.: Silicon oxide buffer layer at the p–i interface in amorphous and microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 120, 143150 (2014).
32. Pieters, B.E., Stiebig, H., Zeman, M., and van Swaaij, R.A.C.M.M.: Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells. J. Appl. Phys. 105, 044502 (2009).
33. Brammer, T. and Stiebig, H.: Applying analytical and numerical methods for the analysis of microcrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 90(18–19), 30213030 (2006).
34. Centurioni, E., Iencinella, D., Rizzoli, R., and Zignani, F.: Silicon heterojunction solar cell: A new buffer layer concept with low-temperature epitaxial silicon. IEEE Trans. Electron Devices 51(11), 18181824 (2004).
35. Lu, M., Bowden, S., Das, U., and Birkmire, R.: Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation. Appl. Phys. Lett. 91, 063507 (2007).
36. Repmann, T., Sehrbrock, B., Zahren, C., Siekmann, H., Müller, J., Rech, B., Psyk, W., Geyer, R., and Lechner, P.: Thin film solar modules based on amorphous and microcrystalline silicon. Proceedings of Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003, pp. 15741579.
37. van de Krol, R. and Grätzel, M.: Photoelectrochemical Hydrogen Production (Springer, New York, 2012).
38. Levy-Clement, C., Heller, A., Bonner, W.A., and Parkinson, B.A.: Spontaneous photoelectrolysis of HBr and HI. J. Electrochem. Soc. 129(8), 17011708 (1982).

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Urbain et al. supplementary material
Supplementary figures

 Word (70 KB)
70 KB

a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production

  • Félix Urbain (a1), Vladimir Smirnov (a1), Jan-Philipp Becker (a1), Uwe Rau (a1), Friedhelm Finger (a1), Jürgen Ziegler (a2), Bernhard Kaiser (a2) and Wolfram Jaegermann (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.