Skip to main content Accessibility help

Antimicrobial hydrogels with controllable mechanical properties for biomedical application

  • Si-Hao Chen (a1) (a2), Zhi Li (a1) (a2), Zu-Lan Liu (a1) (a2), Lan Cheng (a1) (a2) (a3), Xiao-Ling Tong (a1) (a3) and Fang-Yin Dai (a1) (a2) (a3)...


The antibacterial hydrogels can be widely used in the biomedical area owing to their excellent properties. The main limitation of antibacterial hydrogels is their poor mechanical strength. In this study, the novel hydrogels were fabricated with a mixture of silk fibroin (SF), chitosan (CH), agarose (AG), and silver nanoparticles (SNPs) via facile reaction condition without inorganic substances. The mechanical property of these fabricated hydrogels can be modulated by the concentration of SF or AG. The rheological studies demonstrated enhanced elasticity of CH-doped hydrogels. Because of the presence of CH and Ag in hydrogels, the antimicrobial property against gram-positive and gram-negative bacteria was exhibited. Cytocompatibility test proved the very low toxic nature of the hydrogels. In addition, these composite hydrogels have a smaller porosity, higher swelling ratio, and good compatibility, indicating their great potential for biomedical application.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Xu, R., Luo, G., Xia, H., He, W., Zhao, J., Liu, B., Tan, J., Zhou, J., Liu, D., Wang, Y., Yao, Z., Zhan, R., Yang, S., and Wu, J.: Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40, 111 (2015).
2.Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X., Wei, Y., and Qian, Z.: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34, 63776387 (2013).
3.Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., and Ma, P.X.: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 3447 (2017).
4.Unnithan, A.R., Gnanasekaran, G., Sathishkumar, Y., Lee, Y.S., and Kim, C.S.: Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr. Polym. 102, 884892 (2014).
5.MacNeil, S.: Progress and opportunities for tissue-engineered skin. Nature 445, 874880 (2007).
6.Duchi, S., Onofrillo, C., O’Connell, C.D., Blanchard, R., Augustine, C., Quigley, A.F., Kapsa, R.M.I., Pivonka, P., Wallace, G., Di Bella, C., and Choong, P.F.M.: Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 7, 5837 (2017).
7.Drury, J.L. and Mooney, D.J.: Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 43374351 (2003).
8.Raeber, G.P., Lutolf, M.P., and Hubbell, J.A.: Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophys. J. 89, 13741388 (2005).
9.Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H., and West, J.L.: Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials 22, 30453051 (2001).
10.Ngoc Quyen, T., Joung, Y.K., Lih, E., and Park, K.D.: In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12, 28722880 (2011).
11.Balakrishnan, B., Mohanty, M., Fernandez, A.C., Mohanan, P.V., and Jayakrishnan, A.: Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27, 13551361 (2006).
12.Yang, J.Z., Zhang, Y.S., Yue, K., and Khademhosseini, A.: Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57, 125 (2017).
13.Li, W., Li, X., Li, W., Wang, T., Li, X., Pan, S., and Deng, H.: Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture. Eur. Polym. J. 48, 18461853 (2012).
14.Mohammed, S., Chouhan, G., Anuforom, O., Cooke, M., Walsh, A., Morgan-Warren, P., Jenkins, M., and de Cogan, F.: Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing. Mater. Sci. Eng., C 78, 203209 (2017).
15.Normand, V., Lootens, D.L., Amici, E., Plucknett, K.P., and Aymard, P.: New insight into agarose gel mechanical properties. Biomacromolecules 1, 730738 (2000).
16.Yuan, Y., Wang, L., Mu, R.J., Gong, J.N., Wang, Y.Y., Li, Y.Z., Ma, J.Q., Pang, J., and Wu, C.H.: Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydr. Polym. 190, 196203 (2018).
17.Pauly, H.M., Place, L.W., Donahue, T.L.H., and Kipper, M.J.: Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers. Biomacromolecules 18, 22202229 (2017).
18.Raia, N.R., Partlow, B.P., McGill, M., Kimmerling, E.P., Ghezzi, C.E., and Kaplan, D.L.: Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131, 5867 (2017).
19.Tozzi, L., Laurent, P.A., Di Buduo, C.A., Mu, X., Massaro, A., Bretherton, R., Stoppel, W., Kaplan, D.L., and Balduini, A.: Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 178, 122133 (2018).
20.Dubey, P., Kumar, S., Aswal, V.K., Ravindranathan, S., Rajamohanan, P.R., Prabhune, A., and Nisal, A.: Silk fibroin-sophorolipid gelation: Deciphering the underlying mechanism. Biomacromolecules 17, 33183327 (2016).
21.Gharibi, R., Yeganeh, H., Rezapour-Lactoee, A., and Hassan, Z.M.: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: In vitro and in vivo evaluations. ACS Appl. Mater. Interfaces 7, 2429624311 (2015).
22.Chen, W-Y., Chang, H-Y., Lu, J-K., Huang, Y-C., Harroun, S.G., Tseng, Y-T., Li, Y-J., Huang, C-C., and Chang, H-T.: Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater. 25, 71897199 (2015).
23.Dash, M., Chiellini, F., Ottenbrite, R.M., and Chiellini, E.: Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 9811014 (2011).
24.Ueno, H., Mori, T., and Fujinaga, T.: Topical formulations and wound healing applications of chitosan. Adv. Drug Delivery Rev. 52, 105115 (2001).
25.Klossner, R.R., Queen, H.A., Coughlin, A.J., and Krause, W.E.: Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9, 29472953 (2008).
26.Chedly, J., Soares, S., Montembault, A., von Boxberg, Y., Veron-Ravaille, M., Mouffle, C., Benassy, M.N., Taxi, J., David, L., and Nothias, F.: Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 138, 91107 (2017).
27.Pirvanescu, H., Balasoiu, M., Ciurea, M.E., Balasoiu, A.T., and Manescu, R.: Wound infections with multi-drug resistant bacteria. Chirurgia 109, 7379 (2014).
28.Liang, D., Lu, Z., Yang, H., Gao, J., and Chen, R.: Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 8, 39583968 (2016).
29.Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., and Chen, R.: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym. 156, 460469 (2017).
30.Jayaramudu, T., Varaprasad, K., Raghavendra, G.M., Sadiku, E.R., Mohana Raju, K., and Amalraj, J.: Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity. J. Biomater. Sci., Polym. Ed. 28, 15881602 (2017).
31.Ahamed, M., AlSalhi, M.S., and Siddiqui, M.K.J.: Silver nanoparticle applications and human health. Clin. Chim. Acta 411, 18411848 (2010).
32.Matricardi, P., Di Meo, C., Coviello, T., Hennink, W.E., and Alhaique, F.: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Delivery Rev. 65, 11721187 (2013).
33.Ayub, Z.H., Arai, M., and Hirabayashi, K.: Mechanism of the gelation of fibroin solution. Biosci., Biotechnol., Biochem. 57, 19101912 (1993).
34.Asakura, T., Kuzuhara, A., Tabeta, R., and Saito, H.: Conformation characterization of bombyx mori silk fibroin in the solid state by high-frequency 13c cross polarization–magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 18, 18411845 (1985).
35.Magoshi, J., Magoshi, Y., Becker, M.A., and Nakamura, S.: Biospinning by bombyx mori silkworm. Abstr. Pap. 212, 53-CELL (1996).
36.Hanawa, T., Watanabe, A., Tsuchiya, T., Ikoma, R., Hidaka, M., and Sugihara, M.: New oral dosage form for elderly patients—preparation and characterization of silk fibroin gel. Chem. Pharm. Bull. 43, 284288 (1995).
37.Zhou, Y., Dong, Q., Yang, H., Liu, X., Yin, X., Tao, Y., Bai, Z., and Xu, W.: Photocrosslinked maleilated chitosan/methacrylated poly(vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr. Polym. 168, 220226 (2017).
38.Singh, Y.P., Bhardwaj, N., and Mandal, B.B.: Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl. Mater. Interfaces 8, 2123621249 (2016).
39.Priya, M.V., Kumar, R.A., Sivashanmugam, A., Nair, S.V., and Jayakumar, R.: Injectable amorphous chitin-agarose composite hydrogels for biomedical applications. J. Funct. Biomater. 6, 849862 (2015).
40.Le Goff, K.J., Gaillard, C., Helbert, W., Garnier, C., and Aubry, T.: Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr. Polym. 116, 117123 (2015).
41.Zheng, L.Y. and Zhu, J.A.F.: Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 54, 527530 (2003).
42.Rai, M., Yadav, A., and Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 7683 (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed