Skip to main content Accessibility help
×
Home

Anisotropic surface stability of TiB2: A theoretical explanation for the easy grain coarsening

  • Wei Sun (a1), Huimin Xiang (a2), Fu-Zhi Dai (a2), Jiachen Liu (a3) and Yanchun Zhou (a2)...

Abstract

The exaggerated grain growth, anisotropic crystallite morphology, and thermal expansion are the main reasons for the microcracking of sintered TiB2, wherein grain coarsening and anisotropic crystallite morphology are believed to be controlled by the surface stabilities of TiB2. To deeply understand the grain growth mechanism, the anisotropic stability and bonding features of TiB2 surfaces, including $\left( {11\bar 20} \right)$ , two types of (0001), and three types of $\left( {10\bar 10} \right)$ , are investigated by first-principles calculations. By employing the two-region modeling method, surface energies are calculated and the $\left( {11\bar 20} \right)$ surface is found to be more stable than (0001) and $\left( {10\bar 10} \right)$ surfaces. Hexagonal plate-like grain morphology is predicted. The different bonding conditions of surface Ti and B atoms contribute to the difference of surface structure relaxation between surfaces with Ti- and B-termination, which lead the B-terminated ones to be more stable. It is also found that the surface energies of TiB2 are much higher than those of ZrB2 with a similar structure, which may be responsible for the easy coarsening of TiB2.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yczhou@imr.ac.cn, yczhou714@gmail.com

Footnotes

Hide All

Contributing Editor: Sung-Yoon Chung

Footnotes

References

Hide All
1. van Wie, D.M., Drewry, D.G., King, E.D., and Hudson, C.M.: The hypersonic environment: Required operation conditions and design challenges. J. Mater. Sci. 39, 5915 (2004).
2. Opeka, M.M., Talmy, I.G., and Zaykoski, J.A.: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).
3. Munro, R.G.: Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 105, 709 (2000).
4. Basu, B., Raju, G.B., and Suri, A.K.: Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51, 6 (2006).
5. Zhou, Y.C., Xiang, H.M., Feng, Z.H., and Li, Z.P.: General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J. Mater. Sci. Technol. 31, 285 (2015).
6. Murthy, T.S.R.Ch., Basu, B., and Balsubramaniam, R.: Processing and properties of TiB2 with MoSi2 sinter-additive: A first report. J. Am. Ceram. Soc. 89, 131 (2006).
7. Lönnberg, B.: Thermal expansion studies on the group IV–VII transition metal diborides. J. Less-Common Met. 141, 145 (1988).
8. Okamoto, N.L., Kusakari, M., Tanaka, K., Inui, H., and Otani, S.: Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2 . Acta Mater. 58, 76 (2010).
9. Xiang, H.M., Feng, Z.H., Li, Z.P., and Zhou, Y.C.: Temperature-dependence of structural and mechanical properties of TiB2: A first principle investigation. J. Appl. Phys. 117, 225902 (2015).
10. Evans, A.G.: Microfracture from thermal expansion anisotropy: I. Single phase systems. Acta Metall. 6, 1845 (1978).
11. Liu, B., Cooper, V.R., Zhang, Y.W., and Weber, W.J.: Segregation and trapping of oxygen vacancies near the SrTiO3 Σ3 (112) [110] tilt grain boundary. Acta Mater. 90, 394 (2015).
12. Zhang, Y.H., Liu, B., and Wang, J.Y.: Self-assemble of carbon vacancies in sub-stoichiometric ZrC1−x . Sci. Rep. 5, 18098 (2015).
13. Han, Y.F., Dai, Y.B., Shu, D., Wang, J., and Sun, B.D.: First-principles study of TiB2(0001) surfaces. J. Phys.: Condens. Matter 18, 4197 (2006).
14. Volonakis, G., Tsetseris, L., and Logothetidis, S.: Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects. Mater. Sci. Eng., B 176, 484 (2011).
15. Kang, S.H. and Kim, D.J.: Synthesis of nano-titanium diboride powders by carbothermal reduction. J. Eur. Ceram. Soc. 27, 715 (2007).
16. Bača, L. and Stelzer, N.: Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors. J. Eur. Ceram. Soc. 28, 907 (2008).
17. Shahbahrami, B., Fard, F.G., and Sedghi, A.: The effect of processing parameters in the carbothermal synthesis of titanium diboride powder. Adv. Powder Technol. 23, 234 (2012).
18. Newnham, R.E.: Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, New York, USA, 2005); p. 358.
19. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).
20. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 7892 (1990).
21. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
22. Pack, J.D. and Monkhorst, H.J.: “Special points for Brillouin-zone integrations”–A reply. Phys. Rev. B: Condens. Matter Mater. Phys. 16, 1748 (1977).
23. Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).
24. Vajeeston, P., Ravindran, P., Ravi, C., and Asokamani, R.: Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 045115 (2001).
25. Gale, J.D. and Rohl, A.L.: The general utility lattice program (GULP). Mol. Simul. 29, 291 (2003).
26. Sun, W., Liu, J.C., Xiang, H.M., and Zhou, Y.C.: A theoretical investigation on the anisotropic surface stability and oxygen adsorption behavior of ZrB2 . J. Am. Ceram. Soc. 99, 4113 (2016).
27. Wang, W.M., Fu, Z.Y., Wang, H., and Yuan, R.Z.: Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J. Eur. Ceram. Soc. 22, 1045 (2002).
28. Ferber, M.K., Becher, P.F., and Finch, C.B.: Effect of microstructure on the properties of TiB2 ceramics. J. Am. Ceram. Soc. 66, C-2 (1983).
29. Fan, Z., Guo, Z.X., and Cantor, B.: The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs. Composites, Part A 28, 131 (1997).

Keywords

Anisotropic surface stability of TiB2: A theoretical explanation for the easy grain coarsening

  • Wei Sun (a1), Huimin Xiang (a2), Fu-Zhi Dai (a2), Jiachen Liu (a3) and Yanchun Zhou (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed